

Dobot M1 机器人用户手册

文档版本: V1.0.3 发布日期: 2017-11-15

深圳市越疆科技有限公司

版权所有 C 越疆科技有限公司2017。 保留一切权利。

非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本文档内容的部分或全部, 并不得以任何形式传播。

免责申明

在法律允许的最大范围内,本手册所描述的产品(含其硬件、软件、固件等)均"按照现状"提供,可能存在瑕疵、错误或故障,越疆不提供任何形式的明示或默示保证,包括但不限于适销性、质量满意度、适合特定目的、不侵犯第三方权利等保证;亦不对使用本手册或使用本公司产品导致的任何特殊、附带、偶然或间接的损害进行赔偿。

在使用本产品前详细阅读本使用手册及网上发布的相关技术文档并了解相关信息,确保 在充分了解机器人及其相关知识的前提下使用机械臂。越疆建议您在专业人员的指导下使用 本手册。该手册所包含的所有安全方面的信息都不得视为Dobot的保证,即便遵循本手册及 相关说明,使用过程中造成的危害或损失依然有可能发生。

本产品的使用者有责任确保遵循相关国家的切实可行的法律法规,确保在越疆机械臂的 使用中不存在任何重大危险。

越疆科技有限公司

地址: 深圳市南山区桃源街道塘朗工业区A区8栋4楼

网址: <u>http://cn.dobot.cc/</u>

用户手册

前 言

目的

本手册介绍了Dobot M1机械臂的功能、技术规格、安装指导、系统调试等,方便用户了解和使用Dobot M1机械臂。

读者对象

本手册适用于:

- 客户工程师
- 销售工程师
- 安装调测工程师
- 技术支持工程师

修订记录

时间	修订记录
2017/9/26	第一次发布
2017/10/11	修改2.3.4.2 点位模式(PTP)中JUMP运动模式
	修改6.1.2 报警说明
	增加3.3 (可选)末端套件安装
2017/10/31	增加:
	• 6.4 Blockly操作
	• 6.6 在线管理操作
	• 6.7 操作示例
	修改:
	• 根据最新版本的软件刷新界面相关的内容
	• 修改6.1.2报警说明和6.1.4JUMP存点说明
2017/11/03	增加:
	• 5.3 急停开关连接
	• 5.4.2 M1关机调试
	• 6.7.2 外接驱动示例
	• 6.7.3 同一点改变臂方向示例
	修改:
	• 5.4.3 IP设置
	• 5.4.4 急停功能调试
2017/11/14	增加3.4 安全注意事项

时间	修订记录
2017/11/28	修改:
	 3.4 (可选) 气泵盒安装
	• 5.4.6 下使能功能调试
	• 6.2 示教再现操作
	• 6.5 I/O助手操作
2017/12/13	修改: 5.2.2 网线连接

符号约定

在本手册中可能出现下列标志,它们所代表的含义如下。

符号	说明
▲ 危险	表示有高度潜在危险,如果不能避免,会导致人员 死亡或严重伤害
▲	表示有中度或低度潜在危害,如果不能避免,可能 导致人员轻微伤害、机械臂毁坏等情况
<u> </u>	表示有潜在风险,如果忽视这些文本,可能导致机 械臂损坏、数据丢失或不可预知的结果
Ш 说明	表示是正文的附加信息,是对正文的强调和补充

目 录

1.	安全	注意事項	页	•••••	
	1.1	通用安全	È		1
	1.2	使用安全	È		1
2.	产品	简介	••••••	•••••	
	2.1	概述			
	2.2	产品外观	见及构成		
	2.3	工作原理	里及规格		4
		2.3.1	工作空间		4
		2.3.2	坐标系		4
		2.3.3	机械臂方向		6
		2.3.4	运动功能		7
	2.4	技术规构	各		
		2.4.1	技术参数		
		2.4.2	尺寸参数		
3.	硬件	安装		••••••	14
	3.1	环境要求	k		
	3.2	机械臂底	ミ座安装		
	3.3	(可选)	末端套件安装		
	3.4	(可选)	气泉盒安装		
4.	电气	特性说明	归	••••••	19
	4.1	接口板.			
	4.2	指示灯.			
	4.3	接口说明	月		
		4.3.1	外直电源接口 土在拉口		
		4.3.2	▲µ按□ ↓ 郭拉尼斯拉口		
		4.3.3	外部扩展权接口		
_	ᆂ	4.3.4 注册3回4	迪 信按口		
э.	女衣	;一 炯次)。	±	•••••	
	5.1	扒什女者 511	文 环	••••••	
		5.1.1 ·	小児安水 DobotStudio 故供/	्र न रूस मज	
		5.1.2 I	DobotStudio 软件	马获取 ⁻	
		5.1.5	D0001310000 软件。 安装后验证	乆 衣	
		5.1.4	又衣口挜吐 导堂办理		
	52	外部线组	开市处埕 暨连接	•••••••••••••••••••••••••••••••••••••••	
	5.2	기 비가 드립 전 5 2 1	8.年頃 串口连接		28
		5.2.1	平百之设 网线连接		29
	53	急停开主	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		29
	5.4	系统调测	、 一 川		30
	J.T	5.4.1	M1 启动调试		30
		5.4.2	M1 关机调试		
		5.4.3	IP 设置		
	文档	版本 V1.0.	3 (2017-11-15)	用户手册	版权所有 © 越疆科技有限公司

	5.4.4	急停功能调试	35
	5.4.5	运动功能调试	35
	5.4.6	下使能功能调试	
6. 操作	指南		
6.1	Dobot	Studio 使用说明	
	6.1.1	模块说明	
	6.1.2	报警说明	
	6.1.3	ARC 存点说明	41
	6.1.4	JUMP 存点说明	43
6.2	示教再	环操作	43
6.3	脚本控	图制操作	51
6.4	Blockl	y 操作	
6.5	I/O 助	手操作	54
6.6	在线管	产理操作	55
	6.6.1	脱机管理	55
	6.6.2	应用升级	57
6.7	操作示	云例	
	6.7.1	运动轨迹示例	
	6.7.2	外接驱动示例	61
	6.7.3	同一点改变臂方向示例	62

1. 安全注意事项

本章介绍了使用本产品时应注意的安全事项,首次使用机械臂时请仔细阅读本手册后再 使用,本产品应在符合设计规格要求的环境下使用,未经授权请勿改造产品,否则可能导致 产品故障,甚至人身伤害、触电、火灾等。使用本产品进行系统设计与制造的人员必须经过 本公司或相应机构的培训或具有同等专业技能的人员。机械臂的安装、操作、示教、编程以 及系统开发等人员,都必须先仔细阅读该手册,严格按照操作手册规范使用机器人。

1.1 通用安全

/<u>|</u>]_{危险}

机械臂属于带电设备,非专业人士不得随意更改线路,否则容易给设备或者人身带来伤害。

使用机械臂进行工业设计与制作时应遵循如下安全规则:

- 操作机械臂时,应当严格遵守当地的法规和规范,手册中所描述的安全注意事项仅 作为当地安全规范的补充。
- 手册中描述的"危险"、"警告"和"注意"事项,只作为所有安全注意事项的补充 说明。
- 请在规定的环境范围内使用机械臂,超出机械臂规格及负载条件使用会缩短产品的 使用寿命甚至损坏设备。
- 负责安装、操作、维护Dobot机械臂的人员必须先经过严格培训,了解各种安全注意事项,掌握正确的操作和维护方法之后,才能操作和维护机器人。
- 用户需确保机械臂处于安全条件下运行,机械臂周边不能有危害机械臂的物体。
- 机械臂的危险领域为动作领域+100mm的空间,为了防止人员误入机械臂的动作领域,请务必设置安全防护栏,以禁止人员进入危险区域。
- 当温度接近结冰温度时,应以10%或者更小的速度,对机械臂运行10分钟以上进行 预热。预热机械臂后才能进行其他动作操作。
- 高腐蚀性清洁不适用于机械臂的清洁,阳极氧化的部件不适用于浸没清洁。
- 未经专业培训人员不得擅自维修故障产品,不得擅自拆卸机械臂,若产品出现故障, 请及时联系Dobot技术支持工程师。
- 请务必进行日常检查及定期维护,及时更换故障部件,保障设备的安全运行。
- 若该产品报废,请遵守相关法律正确处理工业废料,保护环境。
- 1.2 使用安全

⚠警告

安装机械臂时需进行断电操作,以防出现触电或故障。

对机械臂进行安装、示教、编程操作时应遵循如下安全规则:

文档版本 V1.0.3(2017-11-15)

版权所有 © 越疆科技有限公司

- 搬运、安装过程中请务必小心,应按包装箱上的提示注意轻放、按箭头方向正确放置机器人,否则容易损坏机器。
- 操作机械臂之前,请找到并熟知急停功能的操作方法,确保在突发紧急情况下能使机械臂紧急停止。
- 机械臂接通电源盒前,必须先将机械臂所需的线缆接通,才能给机器臂通电。
- 用PC机操作机械臂时,请勿随意进入机械臂的工作范围内,否则容易给机械臂或自身带来伤害。
- 机械臂正常运行过程中,请勿随意拔插电源线缆及通信线缆。请在机械臂完全断电的情况下断开外部设备,如3D鼠标,否则容易造成机器损坏。

2. 产品简介

2.1 概述

Dobot Master 1代机械臂(简称Dobot M1)着眼于潜力巨大的轻工业市场,支持示教再现、脚本控制、Blockly图形化编程、激光雕刻、3D打印、视觉识别等功能,灵活应用于智能分拣、电路板焊接等自动化生产线,让它既可以成为轻工业用户中解决实际问题的利剑,也可以成为创客用户想象力的承载平台。Dobot M1具有以下特点:

- 驱动控制一体化设计,无需外接控制器,简化初始化安装部署的工序。
- 内置精心调校的伺服电机、谐波减速机,并结合运动学算法,可使机械臂发挥最佳的速度与力量。
- 最大负载能力可达1.5kg,重复定位精度可达0.02mm。
- 丰富的I/O接口和通信接口,可供用户二次开发时使用。

2.2 产品外观及构成

Dobot M1由底座、Z轴、大臂、小臂、R轴组成,外观如图 2.1所示。

2.3 工作原理及规格

本章主要描述Dobot M1的工作空间、工作原理、尺寸大小以及技术规格参数。

2.3.1 工作空间

Dobot M1的工作空间如图 2.2所示。

图 2.2 Dobot M1 工作空间

2.3.2 **坐标系**

Dobot M1的坐标系可分为关节坐标系和世界坐标系,分别如图 2.3和图 2.4所示。

图 2.3 关节坐标系

图 2.4 世界坐标系

- 关节坐标系:以各运动关节为参照确定的坐标系。
 Dobot M1总共有四个关节:
 - J1、J2、J4关节为旋转关节,其轴线相互平行,在水平面内进行定位和定向, 逆时针为正。
 - J3关节为移动关节,用于完成末端夹具在垂直平面的的运动,垂直向上为正。
- 世界坐标系: 以机械臂底座为参照确定的坐标系。
 - 坐标系原点为机械臂的大臂下垂到Z轴丝杠最底部时大臂电机轴线的圆心。
 - X轴方向垂直于固定底座向前。
 - Y轴方向垂直于固定底座向左。
 - Z轴符合右手定则,垂直向上为正方向。
 - R轴为末端中心相对于原点的姿态,逆时针为正。R轴坐标为J1、J2和J4轴的坐标之和。

2.3.3 机械臂方向

Dobot M1具备两种臂方向(左手或右手方向),即机械臂运动时小臂可以向左或者向右, 使机械臂可以在既定的的工作范围内移动到几乎任何位置和方向。机械臂运动时需指定臂方 向,如果不指定臂方向,可能会导致机械臂未按既定的路径运动,从而对外围设备造成干扰。 Dobot M1臂方向如图 2.5和图 2.6所示。

图 2.5 右手方向

图 2.6 左手方向

2.3.4 运动功能

机械臂运动模式包括点动模式、点位模式(PTP)、圆弧运动模式(ARC)以及圆形运动模式(CIRCLE), PTP、ARC和CIRCLE可总称为存点再现运动模式。

2.3.4.1 点动模式

点动模式即示教时移动机械臂的坐标系,使机械臂移动至某一点。Dobot M1的坐标系可 分为世界坐标系和关节坐标系,用户可单击世界坐标系按钮或关节坐标系按钮移动机械臂。

□□说明

本节以DobotStudio的界面操作来说明Dobot M1的点动模式。

- 世界坐标系模式:
 - 单击"X+"、"X-",机械臂会沿X轴正负方向移动。
 - 单击"Y+"、"Y-",机械臂会沿Y轴正负方向移动。
 - 单击"Z+"、"Z-",机械臂会沿Z轴正负方向移动。
 - 单击"R+"、"R-",机械臂末端会沿R轴正负方向旋转。
- 关节坐标系模式:
 - 单击"J1+"、"J1-",可控制J1关节(大臂)正负方向旋转。
 - 单击"J2+"、"J2-",可控制J2关节(小臂)正负方向旋转。
 - 单击"J3+"、"J3-",可控制J3关节(Z轴)正负方向移动。
 - 单击 "J4+"、"J4-",可控制J4关节(R轴)正负方向旋转。

2.3.4.2 点位模式 (PTP)

点位模式即实现点到点运动,Dobot M1的点位模式包括MOVJ、MOVL以及JUMP三种运动模式。不同的运动模式,示教后存点回放的运动轨迹不同。

 MOVJ:关节运动,由A点运动到B点,各个关节从A点对应的关节角运行至B点对应的关节角。关节运动过程中,各个关节轴的运行时间需一致,且同时到达终点, 文档版本 V1.0.3 (2017-11-15)
 用户手册
 版权所有 © 越疆科技有限公司

如图 2.7所示。

图 2.7 MOVL 和 MOVJ 运动模式

- MOVL: 直线运动, A点到B点的路径为直线, 如图 2.7所示。
- , JUMP: 门型轨迹, A点到B点以MOVJ运动模式移动, 如图 2.8所示。
 - 1. 以MOVJ运动模式上升到一定高度(Height)。
 - 2. 以MOVJ运动模式过渡到最大抬升高度(Limit)。
 - 3. 以MOVJ运动模式平移到B点上方的高度处。
 - 4. 以MOVJ运动模式过渡到B点高度加上Height后的高度处。
 - 5. 以MOVJ运动模式下降到B点所在位置。

图 2.8 JUMP 运动模式

JUMP运动模式下,如果起始点或结束点高度大于等于最大抬升高度,或者起始点抬升 到一定高度后,大于等于最大抬升高度,其运动轨迹与图 2.6有所不同。假设A为起始点, B为结束点,Limit为最大抬升高度,Height为抬升高度。

• A点、B点高度均大于Limit,且A点高度大于B点高度。

2.3.4.3 **圆弧模式 (ARC**)

圆弧模式即示教后存点回放的运动轨迹为圆弧。圆弧轨迹是空间的圆弧,由当前点、圆弧上任一点和圆弧结束点三点共同确定。圆弧总是从起点经过圆弧上任一点再到结束点,如 图 2.9所示。

使用圆弧运动模式时,需结合其他运动模式确认圆弧上的三点,且三点不能在同一条直线上。

用户手册

图 2.9 圆弧运动模式

2.3.4.4 圆形模式 (CIRCLE)

圆形模式与圆弧模式相似,示教后存点回放的运动轨迹为整圆。使用圆形模式时,也需 结合其他运动模式确认圆形上的三点。

2.3.4.5 应用场景

机械臂存点回放时,采用不同的运动模式,机械臂运动轨迹不同,其应用场景也不同,如表 2.1所示。

运动模式	应用场景
MOVL	当应用场景中要求存点回放的运动轨迹为 直线时,可采用MOVL运动模式
MOVJ	当应用场景中不要求存点回放的运动轨迹, 但要求运动速度快的情况下,可采用MOVJ 运动模式
JUMP	当应用场景中两点运动时需抬升一定的高度,如抓取、吸取等场景,可采用JUMP运动模式
ARC	当应用场景中要求存点回放的运动轨迹为 圆弧时,如点胶等场景,可采用ARC运动模 式
CIRCLE	当应用场景中要求存点回放的运动轨迹为 整圆时,可采用CIRCLE运动模式

表 2.1 应用场景

2.4 技术规格

2.4.1 技术参数

名称	Dobot M1		
文档版本 V1.0.3	(2017-11-15)	用户手册	版权所有 © 越疆科技有限公司

臂长	400mm	
额定负载	1.5kg	
最大运动范围	大臂	$\pm 90^{\circ}$
	小臂	±135°
	Z轴丝杠	250mm
	末端旋转	$\pm 360^{\circ}$
最大运动速度	大小臂关节 速度	180° /s
	大小臂合成 速度	2000mm/s
	Z 轴速度	1000mm/s
重复定位精度	0.02mm	
电源	100V~240V AC, 50/60Hz	
操作系统	Linux	
通信接口	Ethernet, RS-232C	
I/O	 22路数字输出 	
	 24路数字输入 	
	• 2路DAC	输出
	• 6路ADC	输入
控制软件	DobotStudio	

2.4.2 尺寸参数

Dobot M1的尺寸参数如图 2.10和图 2.11所示。

图 2.11 Dobot M1 尺寸参数示意图(2)

3. 硬件安装

3.1 环境要求

机械臂的运行环境温度请控制在5℃~40℃之间,湿度请控制在45%~75%之间,且无凝露。

3.2 机械臂底座安装

机械臂的底座安装直接影响机械臂运行的稳定性。用户在固定机械臂时可根据机械臂底 座孔位尺寸以及真实环境自行设计选择安装台架。机械臂的固定台架不仅需承受机械臂的重 量,还需承受最大加速度运动时的动态作用力。将机械臂固定在台架上时需注意:

- 根据机械臂的工作区间设计台架,确保运行过程中机械臂的运动轨迹不受到干扰。
- 台架上用于支撑机械臂的水平面需保持水平。
- 严禁将水杯、饮料等装有液体的杯具靠近或者放在台架上,以免液体渗漏造成安全 隐患。

操作步骤

- 步骤1 检查机械臂的包装是否完好,确认包装箱里的材料与装箱清单一致。
- 步骤 2 请根据机械臂底座固定孔位尺寸在您的工作台架上开孔。 机械臂底座固定孔位尺寸如图 3.1所示。

图 3.1 Dobot M1 底座尺寸

步骤3 将机械臂搬运至机械臂安装台架上,对上各安装孔位,利用内六角扳手和6根 M6螺栓将机械臂固定。

3.3 (可选)末端套件安装

用户可以在M1的末端圆柱接口上安装夹爪、吸盘等,用于搬运、智能分拣等。M1的末端圆柱接口尺寸如图 3.2所示,请选择配套的夹爪或吸盘等装置。

文档版本 V1.0.3(2017-11-15)	用户手册	版权所有 © 越疆科技有限公司

图 3.2 末端圆柱接口尺寸

3.4 (可选)气泵盒安装

用户利用夹爪或吸盘吸取实物时,还需安装配套的气泵盒,气泵盒的启停可通过I/O接口来控制。我们提供的气泵盒仅用于I/O接口调试,详细请参见6.5 I/O助手操作。用户在实际工业应用中需选择专业的气源。

气泵盒如图 3.3所示。其中, 红框中线缆说明如表 3.1所示。

图 3.3 气泵盒

表 3.1 线缆说明

线缆颜色	说明
红色	VCC_24V
黑色	PGND
黄色	OUT1,控制气泵进气和出气
蓝色	OUT2,控制气泵的启停

文档版本	V1.0.3	(2017-11-15)

假设气泵盒连接至底座I/O接口上,气泵盒的黄色线缆和蓝色线缆分别接入底座I/O接口 上数字输出引脚,对应*表 4.6 底座I/O接口说明*中的DOUT17和DOUT18引脚。红色线缆和 黑色线缆分别接入底座I/O接口的VCC_24V和CAN总线接口上的GND引脚。其中,黄色线缆 和蓝色线缆的连接引脚可互换。气泵连接如图 3.4所示,本节仅为示例,请参见4.3 接口说 明 选择合适的接口进行连接。

图 3.4 气泵连接

当气泵盒连接I/O接口时,端子不能裸露在空气中,以免发生短路。为了适配所有的I/O接口,气泵盒的端子会稍长。如果连接时出现裸露的情况,需裁剪端子。端子的规范连接与不规范连接分别如图 3.5和图 3.6所示。

图 3.5 端子规范连接示意图

图 3.6 端子不规范连接示意图

4. 电气特性说明

4.1 接口板

Dobot M1接口板位于底座背部,示意图如图 4.1所示,其功能说明如表 4.1所示。

图 4.1 底座背部接口板示意图

表 4.1 底座背部接口板说明

序号	说明
1	Dobot M1电源开关
2	CAN总线接口
3	RS-232C通信接口
4	底座I/O接口
5	示教器接口,保留
6	USB HOST接口,保留
7	以太网接口
8	外部扩展板接口
9	外接电源接口
10	指示灯
11	保留接口

4.2 指示灯

Dobot M1的指示灯包含接口板和外置电源盒上指示灯。指示灯状态说明如表 4.2所示。

文档版本 V1.0.3(2017-11-15)

表 4.2 指示灯说明

项目	说明
外置电源盒指示灯	接通电源后,外置电源盒的指示灯常亮
系统指示灯	• 机械臂未上电时,底座所有指示灯均熄灭
	• 黄色指示灯:机械臂上电时,底座黄色指示灯常亮15秒左右后闪烁一次 再常亮约5秒
	 绿色指示灯:机械臂上电后,底座黄色指示灯熄灭,绿色指示灯常亮约 5秒后一直闪烁,此时说明机械臂已处于工作状态
	• 蓝色指示灯:表示正在脱机运行,暂时保留。
	• 红色指示灯:表示机械臂运行过程中有报警,暂时保留。

4.3 接口说明

Dobot M1的I/O接口采用统一编址的方式。用户可通过I/O接口实现高低电平输出、电平输入读取等功能,以控制机械臂的外围设备。

4.3.1 外置电源接口

4.3.1.1 外置电源 AC 输入接口

表 4.3 外置电源输入接口说明

引脚	名称	功能	电压/电流
1	AC_L	电源交流输入L极	110V~240V AC/3A
2	AC_N	电源交流输入N极	110V~240V AC/3A
3	GND_GROUND	地线接地端	GND

4.3.1.2 **外置电源 DC 输出接口**

表 4.4 外置电源输出接口说明

引脚	名称	功能	电压/电流
1	VOUT	电源直流输出正极	48V DC/10A
2	GND	电源直流输出负极	GND/10A

4.3.2 本体接口

<u> ▲</u>注意

无外加供电源情况下I/O接口的数字输出信号的电流为2mA;外加供电电源情况下数字信号输出的电流支持3A。

文档版本 V1.0.3(2017-11-15) 用户手册 版权用

4.3.2.1 **本体电源接口**

表 4.5 本体电源接口说明

引脚	名称	功能	电压/电流
1	VIN	电源直流输入正极	48V DC/10A
2	GND	电源直流输入负极	GND/10A

4.3.2.2 底座 I/O 接口

表 4.6 底座 I/O 接口说明

引脚	名称	功能	电压/电流	
1	PGND	逻辑电源负极	GND/2A	
2	VCC	逻辑电源正极	24V DC/2A	
3	RS232_RX	RS232通信接收	RS232电平	
4	RS232_TX	RS232通信发送	RS232电平	
5	STOP2+	安全输入2正极	0V,24V/<100mA	
6	STOP1+	安全输入1正极	0V,24V/<100mA	
7	STOP2-	安全输入2负极	0V,24V/<100mA	
8	STOP1-	安全输入1负极	0V,24V/<100mA	
9	DOUT17	数字信号输出	0V,24V/2mA	
10	DOUT18	数字信号输出	0V,24/2mA	
11	DIN_20	数字信号输入	0V,24V/<100mA	
12	DIN_19	数字信号输入	0V,24V/<100mA	
13	DIN_18	数字信号输入	0V,24V/<100mA	
14	DIN_17	数字信号输入	0V,24V/<100mA	

4.3.2.3 CAN 总线接口

表 4.7 CAN 总线接口说明

引脚	名称	功能	电压/电流
1	VBUS	总线电源正极	48V/5A
2	GND	总线电源负极	GND/5A
3	CAN1_H	CAN总线通信	CAN电平
4	CAN1_L	CAN总线通信	CAN电平

4.3.2.4 末端 I/O 接口

表 4.8 末端 I/O 接口说明

引脚	名称	功能	电压/电流	
1	VCC	逻辑电源正极	24V/2A	
2	DOUT19	数字信号输出	0V,24V/2mA	
3	DOUT20	数字信号输出	0V,24V/2mA	
4	DOUT21	数字信号输出	0V,24V/2mA	
5	DOUT22	数字信号输出	0V,24V/2mA	
6	AIN6	模拟信号输入	0V~12V/<100mA	
7	AIN7	模拟信号输入	0V~12V/<100mA	
8	AGND	模拟电源负极	AGND/1A	
9	RS485_A	RS485A总线通信	RS485电平	
10	RS485_B	RS485B总线通信	RS485电平	
11	DIN21	数字信号输入	0V,24V/<100mA	
12	DIN22	数字信号输入	0V,24V/<100mA	
13	DIN23	数字信号输入	0V,24V/<100mA	
14	DIN24	数字信号输入	0V,24V/<100mA	
15	GND	逻辑电源负极	GND/2A	

4.3.3 **外部扩展板接口**

表 4.9 外部扩展板接口说明

引脚	名称	功能	电压/电流
1	A1- 编码器1A相反相信号输入 RS422电平		RS422电平
2	A1+	编码器1A相信号输入	RS422电平
3	DIN1	数字信号输入	0V,24V/<100mA
4	DIN4	数字信号输入	0V,24V/<100mA
5	DIN3	数字信号输入	24V/<100mA
6	AOUT2	模拟信号输出	0V~10V/10mA
7	CAN2_H	CAN总线通信	CAN电平
8	DIN6	数字信号输入	0V,24V/<100mA
9	DIN5	数字信号输入	0V,24V/<100mA
10	AIN2	模拟信号输入	0V~10V/<100mA
11	AIN3	模拟信号输入	0V~10V/<100mA
12	DIN7	数字信号输入	0V,24V/<100mA
13	DIN10	数字信号输入	0V,24V/<100mA
14	DIN9	数字信号输入	0V,24V/<100mA
15	DIN12	数字信号输入	0V,24V/<100mA
16	FPGA_DOUT6	数字信号输出	0V,24V/2mA
	(DOUT16)		
17	FPGA_DOUT5	数字信号输出	0V,24V/2mA
	(DOUT15)		
18	DIN11	数字信号输入	0V,24V/<100mA
19	DIN14	数字信号输入	0V,24V/<100mA
20	DIN13	数字信号输入	0V,24V/<100mA
21	DIN15	数字信号输入	0V,24V/<100mA
22	B1+	编码器1B相信号输入	RS422电平
23	B1-	编码器1B相反相信号输入	RS422电平
24	DOUT2	数字信号输出	0V,24V/2mA
25	DOUT1	数字信号输出	0V,24V/2mA
26	DIN2	数字信号输入	0V,24V/<100mA
27	DOUT4	数字信号输出	0V,24V/2mA
文档版本 🗸	V1.0.3 (2017-11-15)	用户手册	版权所有 © 越疆科技有限公司

23

引脚	名称	功能	电压/电流	
28	DOUT3	数字信号输出	0V,24V/2mA	
29	CAN2_L	CAN总线通信	CAN电平	
30	DOUT5	数字信号输出	0V,24V/2mA	
31	DOUT7	数字信号输出	0V,24V/2mA	
32	DIN8	数字信号输入	0V,24V/<100mA	
33	AIN4	模拟信号输入	0V~10V/<100mA	
34	FPGA_DOUT2 (DOUT12)	数字信号输出	0V,24V/2mA	
35	FPGA_DOUT4 (DOUT14)	数字信号输出	0V,24V/2mA	
36	FPGA_DOUT3 (DOUT13)	数字信号输出	0V,24V/2mA	
37	DIN16	数字信号输入	0V,24V/<100mA	
38	PGND	逻辑电源负极	GND/5A	
39	PGND	逻辑电源负极	GND/5A	
40	VCC	逻辑电源正极	24V/3A	
41	VCC	逻辑电源正极	24V/3A	
42	VCC	逻辑电源正极	24V/3A	
43	B2-	编码器2B相反相信号输入	RS422电平	
44	B2+	编码器2B相信号输入	RS422电平	
45	A2+	编码器2A相信号输入	RS422电平	
46	A2-	编码器2A相反相信号输入	RS422电平	
47	RS_485_A	RS485A总线通信	RS485电平	
48	RS_485_B	RS485B线通信	RS485电平	
49	AOUT1	模拟信号输出	0V~10V/10mA	
50	DOUT6	数字信号输出	0V,24V/2mA	
51	DOUT8	数字信号输出	0V,24V/2mA	
52	AIN1	模拟信号输入	0V~10V/<100mA	
53	DOUT10	数字信号输出	0V,24V/2mA	
54	DOUT9	数字信号输出	0V,24V/2mA	

文档版本 V1.0.3(2017-11-15)

版权所有 © 越疆科技有限公司

引脚	名称	功能	电压/电流
55	FPGA_DOUT1 (DOUT11)	数字信号输出	0V,24V/2mA
56	GND	模拟电源输入负极	GND/1A
57	PGND	逻辑电源负极	GND/5A
58	PGND	逻辑电源负极	GND/5A
59	PGND	逻辑电源负极	GND/5A
60	ON_OFF-	开机信号输入负极	0V~24V/<100mA
61	ON_OFF+	开机信号输入正极	0V~24V/<100mA
62	VCC	逻辑电源正极	5V/2A

4.3.4 通信接口

4.3.4.1 Ethernet 接口

Dobot M1可通过标准的RJ45 Socket接口连接PC机,使用标准的TCP/IP协议。

4.3.4.2 RS-232C 接口

Dobot M1可通过标准的RS-232C接口连接PC机。

5. 安装与调测

5.1 软件安装

用户可通过控制软件DobotStudio控制机械臂,可在DobotStudio界面进行示教再现、二次 开发、3D打印等操作。

5.1.1 环境要求

DobotStudio所支持的操作系统如下所示:

- Win7
- Win8
- Win10

5.1.2 DobotStudio 软件包获取

使用Dobot M1前,请下载配套版本的控制软件DobotStudio,其下载路径为<u>http://cn.dob</u>ot.cc/downloadcenter/dobot-m1.html#most-download。

5.1.3 DobotStudio 软件安装

前提条件

已获取DobotStudio软件包。

操作步骤

步骤1 解压已获取的DobotStudio软件包。

假设DobotStudio软件包解压存放的路径为"E:\DobotStudio",请用户根据实际 情况替换。

- 步骤 2 在DobotStudio解压的文件夹"E:\DobotStudio"双击"DobotStudio.exe"。 弹出"Select Setup Lanuage"对话框。
- 步骤3 请根据实际情况,选择安装语言。
- 步骤4 单击"下一步"。
- 步骤 5 在"安装DobotStudio"界面单击"浏览"选择DobotStudio的安装路径,单击"下一步"。

😥 安装 - DobotStudio	_		\times
选择目标位置 您将把DobotStudio安装在哪里?			Ð
安装程序将把DobotStudio安装在下面的文件夹中。 继续安装, 请单击"下一步"。如果需要选择其它目录,请单击"》	浏览"。		
C:\Program Files\DobotStudio	Ì	揽 问 …	
为了安装本软件,至少需要 568.3 MB 的空闲磁盘空间。			
<上一步[8] 下一步[N] >	取	消

图 5.1 DobotStudio 安装界面

- 步骤6 勾选"创建桌面图标[d]",单击"下一步"。
- 步骤 7 单击"安装"。 等待约40秒左右,弹出"驱动安装(X64)"界面。
- 步骤 8 在"驱动安装(X64)"界面单击"安装"。 系统弹出"驱动安装成功!"的对话框,表示DobotStudio驱动安装成功。
- 步骤9 在"安装DobotStudio"界面单击"下一步"。

步骤 10 单击"完成"。

5.1.4 安装后验证

安装完成后双击DobotStudio软件,如果DobotStudio能够打开,则说明安装成功。

5.1.5 异常处理

如果用户无法打开DobotStudio软件,则需在"C:\Program Files\DobotStudio\attachment attachment"目录下安装VC++库,如图 5.2所示,"C:\Program Files\DobotStudio\attachment attachment"目录下的所有VC++库都需安装。

其中, "C:\Program Files\DobotStudio"为DobotStudio安装目录,请根据实际情况替换。

Windows 10 (C:) > Program Fil	Windows 10 (C:) > Program Files > DobotStudio > attachment			
^	名称 ^	修改日期	类型	大小
	3dModeStl	2017/9/18 11:25	文件夹	
	CH341SER_WIN	2017/9/18 11:25	文件夹	
	📙 grbrMode	2017/9/18 11:25	文件夹	
	Slic3r	2017/9/18 11:25	文件夹	
	📓 Dobot 2.0 Vase.ini	2017/8/9 19:32	配置设置	3 KB
	Dobot 2.0.ini	2017/8/9 19:32	配置设置	3 KB
	📓 Dobot-2.0 Vase-Cura.ini	2017/8/9 19:32	配置设置	11 KB
	🗟 Dobot-2.0-Cura.ini	2017/8/9 19:32	配置设置	11 KB
	DobotStudio_dll_X64.exe	2017/8/9 19:32	应用程序	1,896 KB
	🚡 DobotStudio_dll_X86.exe	2017/8/9 19:32	应用程序	1,719 KB
	👔 Repetier1.0.6.reg	2017/8/9 19:32	注册表项	13 KB
	💿 slic3r.bat	2017/8/9 19:32	Windows 批处理	1 KB
	vc2010_x64.exe	2017/8/9 19:32	应用程序	5,585 KB
	vc2010_x86.exe	2017/8/9 19:32	应用程序	4,955 KB
	👹 vc2013_x64.exe	2017/8/9 19:32	应用程序	7,027 KB
	₩ vc2013_x86.exe	2017/8/9 19:32	应用程序	6,353 KB
	₩ vc2015.x64.exe	2017/8/9 19:32	应用程序	14,944 KB
	i闄 vc2015.x86.exe	2017/8/9 19:32	应用程序	14,119 KB

图 5.2 VC++库信息

5.2 外部线缆连接

5.2.1 串口连接

操作步骤

步骤1 将串口线的一头接入在Dobot M1底座I/O接口上,如图 5.3红框中所示。

图 5.3 串口连接图

步骤 2 将串口线的另一头接入在PC机的"USB"接口。 Dobot M1启动后,在DobotStudio界面左上方的串口下拉菜单,可以查看到相应的串口信息,如图 5.4所示。

文档版本 V1.0.3(2017-11-15)

图 5.4 DobotStudio 串口信息示意图

5.2.2 网线连接

用户可以通过网线将Dobot M1与PC机连接起来。

前提条件

PC机已连接路由器。

操作步骤

- 本节描述PC与Dobot M1通过路由器连接的方法,适用于多台Dobot M1与同一 台PC连接的情况。如果仅一台Dobot M1连接PC,则可通过网线直接将Dobot M1与PC机连接,无需路由器转接。
- 如果需通过网线连接Dobot M1和PC机,则Dobot M1和PC机需在同一局域网内,其IP地址必须在同一网段,且不冲突。所以通过网线连接Dobot M1和PC 机后,还需对Dobot M1或PC机的IP地址进行设置,详细请参见5.4.3 IP 设置。
- 步骤1 将网线一头接入Dobot M1底座的"Ethernet"接口。
- 步骤 2 将网线另一头接入与PC机同一局域网的交换机或路由器。 Dobot M1启动后约5秒,在DobotStudio界面的左上方的串口下拉菜单,可以查 看到相应的IP地址信息。

5.3 急停开关连接

用户在使用Dobot M1前,需外接急停开关,以保证Dobot M1运行过程中能紧急停止,使机械臂的驱动器断电。

操作步骤

将急停开关的线缆接入在Dobot M1底座I/O接口上,如图 5.5和图 5.6所示。

用户手册

图 5.5 急停开关连接示意图(1)

图 5.6 急停开关连接示意图(2)

5.4 系统调测

在Dobot M1出厂时,已进行了原点等各种设置,Dobot M1可以直接投入使用。待Dobot M1全部安装完毕且检查线缆后,可以进行系统调试。

5.4.1 M1 启动调试

文档版本 V1.0.3(2017-11-15)	用户手册	版权所有 © 越疆科技有限公司

前提条件

- DobotStudio已启动。
- 己通过串口线连接Dobot M1的与PC机。
- (可选)已通过网线连接Dobot M1与PC机。
- 已连接Dobot M1和急停开关。

1注意

如果通过网线连接DobotStudio时,请先将PC机接入局域网后再开启DobotStudio。

操作步骤

步骤1 开启Dobot M1。在Dobot M1底座接口板长按开关按钮约2秒,待黄色指示灯亮时松开。

Dobot M1上电时底座接口板黄色指示灯常亮约15秒后闪烁一次,再常亮约5秒, 最后熄灭,表示Dobot M1通电正常,系统正在启动。

待黄色指示灯熄灭后,绿色指示灯常亮约5秒,再一直闪烁,表示机械臂已启动完成。

步骤 2 在DobotStudio界面的串口下拉菜单选择Dobot M1对应串口,单击"Connect"。 如果"Connect"图标变成"Disconnect",则表示Dobot M1与PC机连接成功, Dobot M1可通过DobotStudio来控制。

O DobotStudio-V1.0.3RC = - • • * Settings Tools Help Disconnect COM13 COM13		
Settings Tools Help	ObotStudio-V1.0.3RC	= - 🗆 ×
	Settings Tools Help	
		Emergency Stop

图 5.7 连接成功示意图

⚠注意

- 用户也可以通过网线连接Dobot M1和PC机,可在DobotStudio界面的串口下拉菜单选择Dobot M1对应的IP地址,单击"Connect"连接。此时要求Dobot M1的IP地址和PC机的IP地址处于同一网段,如果不在同一网段,请参见5.4.3 IP 设置修改Dobot M1的IP地址或PC机的IP地址。
- 仅Dobot M1处于Dobot模式时,DobotStudio才能与Dobot M1连接。可在 "Tools>Web Manager"的首页查看Dobot M1的当前模式,如图 5.8所示。详 细请参见6.6 在线管理操作。

192 168 0 210(Dobot W1)	
🖶 Home	
	🖀 DobotM1 Web Management
File Management	The web manager of Dobot M1 integrates offline file management, firmware update, application update, and so on.
	Mode Switch Controlling
	Dobot Mode Dobot Mode
Update Management	
III Update Firmware	
Test Management	

图 5.8 Dobot M1 状态

5.4.2 M1 关机调试

前提条件

- Dobot M1已上电。
- 已连接Dobot M1和急停开关。

操作步骤

在Dobot M1底座接口板长按开关按钮约5秒后松开,关断整个系统的电源。所有指示灯 全熄灭,说明Dobot M1关机成功。

⚠注意

系统启动完成状态下(绿色LED灯闪烁时候),才能长按开关按钮关机。如果在没有启动成功的情况下断电,只能强制断电才能完成Dobot关机操作。

5.4.3 IP 设置

前提条件

- DobotStudio已启动。
- 己通过串口线连接Dobot M1与PC机。
- 已通过网线直接将Dobot M1与PC机连接或通过路由器将Dobot M1与PC机连接。
- 已连接Dobot M1和急停开关。
- Dobot M1 已上电。

5.4.3.1 查询 Dobot M1 IP 地址

- 步骤1 在DobotStudio界面的左上方选择Dobot M1相应的串口,单击"Connect"。 如果"Connect"图标变成"Disconnect",则说明Dobot M1与PC机连接正常。
- 步骤 2 在DobotStudio界面单击"Tools > LAN"。 弹出"Set Dobot LAN"的界面,可查看Dobot M1的IP地址,如图 5.9所示。

文档版本 V1.0.3(2017-11-15) 用户手册 版权所有 © 越疆科技有限公司

🧿 Set	Dobot L	an		×
Status		с	onnect	ed LAN
🖉 Dynamic Host Cor	nfigurat	ion Prot	ocol (D	HCP)
IPAddress	192 .	168 .	0.	189
Netmask	255	255 .	255	0
Gateway	192	168	0.	1
	Confir	m	Clo	se

图 5.9 IP 地址查询

5.4.3.2 修改 Dobot M1 IP 地址

如果需通过网线连接Dobot M1和PC机,则Dobot M1和PC机需在同一局域网内,其 IP地址必须在同一网段,且不冲突,Dobot M1才能通过DobotStudio控制运行。用 户可修改Dobot M1的IP地址,使其IP地址与PC机的IP地址在同一网段,且Dobot M1 的子网掩码和默认网关需与PC的保持一致。

假设PC机的IP地址为192.168.0.10,子网掩码为255.255.255.0,默认网关为192.168.0.1。 用户可以在CMD控制台执行**ipconfig /all**命令查看PC机的IP信息。

- 步骤1 在DobotStudio界面的左上方选择Dobot M1相应的串口,单击"Connect"。 如果"Connect"图标变成"Disconnect",则说明Dobot M1与PC机连接正常。
- 步骤 2 在DobotStudio界面单击"Tools > LAN"。 弹出"Set Dobot LAN"的界面。 步骤 3 在"Set Dobot LAN"界面修改IP地址、子网掩码、默认网关。假设将 IP地址修改为192.168.0.20。
- 步骤 4 在 "Set Dobot LAN" 界面单击 "Confirm"。 如果 "Status" 变为 "Connected LAN",则说明IP地址修改成功。
- 步骤 5 在DobotStudio界面的左上方单击"Disconnect"。 如果"Disconnect"图标变成"Connect",则说明Dobot M1与PC机断开连接。
- 步骤 6 待2秒左右后,在DobotStudio界面的左上方的串口下拉菜单会出现修改后的IP 地址,选中此IP地址,并单击"Connect"。 如果"Connect"图标变成"Disconnect",则说明Dobot M1与PC机通过网线连接正常。

文档版本 V1.0.3 (2017-11-15)

版权所有 © 越疆科技有限公司

5.4.3.3 修改 PC 机 IP 地址

- 用户也可通过修改PC机的IP地址,使其与Dobot M1在同一网段。
 - □□说明

本示例以Win7操作系统为例,请根据实际操作系统修改PC机的IP地址。

- 步骤1 查询Dobot M1的IP地址,请参见5.4.3.1 查询Dobot M1 IP地址。
- 步骤 2 在PC机上单击"开始 > 控制面板"菜单选择"网络和共享中心"。 弹出"网络和共享中心"窗口。
- 步骤 3 在"网络和共享中心"窗口单击"本地连接"。 弹出"本地连接状态"页面。
- 步骤4 在"本地连接状态"页面单击"属性"。 弹出"本地连接属性"页面。
- 步骤 5 在"本地连接属性页面"双击"Internet协议版本4(TCP/IPv4)"。 弹出"Internet协议版本4(TCP/IPv4)属性"页面。
- 步骤 6 在"Internet协议版本4 (TCP/IPv4)属性"页面选择"使用下面的IP地址",修改PC机的IP地址、子网掩码以及默认网关,如所图 5.10示。可将PC机的IP地址修改为与Dobot M1同一网段未被占用的任意IP地址,其子网掩码和默认网关与Dobot M1的一致。

Internet 协议版本 4 (TCP/IPv4) 属性			×
常规			
如果网络支持此功能,则可以获取自动指 络系统管理员处获得适当的 IP 设置。	底的 IP 设置。	否则 , 你	需要从网
○ 自动获得 IP 地址(O)			
—●使用下面的 IP 地址(S):			
IP 地址(I):	•		
子网掩码(U):	•		
默认网关(D):	•	· ·	
○ 自动获得 DNS 服务器地址(B)			
●使用下面的 DNS 服务器地址(E):			
首选 DNS 服务器(P):	•		
备用 DNS 服务器(A):			
□退出时验证设置(L)		L E	奇级(V)
	ā	角定	取消

图 5.10 IP 地址修改示意图

- 步骤7 单击"确定"。
- 步骤 8 在DobotStudio界面的左上方单击 "Disconnect"。

如果"Disconnect"图标变成"Connect",则说明Dobot M1与PC机断开连接。

步骤9 在DobotStudio界面的左上方串口下拉菜单中选中Dobot M1对应的IP地址,并 单击 "Connect"。

如果"Connect"图标变成"Disconnect",则说明Dobot M1与PC机通过网线连接正常。

5.4.4 急停功能调试

前提条件

- Dobot M1已上电,且与PC机正常连接。
- 已连接Dobot M1和急停开关。

操作步骤

- 步骤1 使机械臂处于运行状态,详细请参见6.2 示教再现操作。
- 步骤 2 按下急停开关上的红色按钮,使机械臂处于急停状态,如图 5.11所示。

图 5.11 急停开关

如果机械臂能够立即停止,则说明急停功能正常。

步骤 3 按顺时针方向旋转急停开关上的红色按钮。

旋转约45°时红色按钮弹起,解除急停状态。

步骤4 重新启动Dobot M1,如果Dobot M1能够正常运行,则说明解除急停成功。

5.4.5 运动功能调试

Dobot M1支持的运动功能请参见2.3.4 运动功能。

文档版本 V1.0.3(2017-11-15)

5.4.5.1 点动功能调试

前提条件

- Dobot M1已上电, 且与PC机正常连接。
- 已连接Dobot M1和急停开关。

操作步骤

本节以世界坐标系为例进行点动功能调试,关节坐标系的调试方法与世界坐标系的调试 方法相似,用户需在"Operation Panel"界面选择"Joint",单击"J1+"、"J1-"、"J2+"、"J2-"、 "J3+"、"J3-"、"J4+"、"J4-"来移动机械臂的位置。

步骤1 在DobotStudio的"Operation Panel"界面的坐标系下拉框选择"Cartesian"。 界面显示世界坐标系。

图 5.12 世界坐标系模式

步骤 2 在 "Operation Panel" 界面拖动 "Vel"的滑动条,可改变点动时机械臂的各个 坐标系的运动速度百分比。

其运动速度为各坐标系的最大速度乘以滑动条上显示的百分比。

步骤3 在"Operation Panel"界面拖动"Acc"的滑动条,可改变点动时机械臂的各个 坐标系的运动加速度百分比。

其运动加速度为各坐标系的最大加速度乘以滑动条上显示的百分比。

步骤 4 在 "Operation Panel" 界面单击 "X+",可使机械臂沿世界坐标系的X轴正方向 移动;单击 "X-",可使机械臂沿世界坐标系的X轴反向移动。

用户也可以在"Operation Panel"界面单击"Y+"、"Y-"、"Z+"、"Z-"、"R+"、 "R-",使机械臂在世界坐标系下沿Y轴、Z轴或R轴方向运动。

5.4.5.2 存点再现功能调试

前提条件

- Dobot M1已上电, 且与PC机正常连接。
- 已连接Dobot M1和急停开关。

```
文档版本 V1.0.3(2017-11-15)
```


操作步骤

本节以MOVL运动模式为例进行存点再现功能调试,用户也可选择其他运动模式,如 MOVJ、JUMP、ARC、CIRCLE。ARC和CIRCLE的存点方法请参见6.1.3 ARC存点说明。

- 步骤1 根据5.4.5.1 点动功能调试将机械臂移动至一点。
- 步骤 2 在DobotStudio界面选择"Applications > Playback"。 进入"Playback"界面。
- 步骤 3 在 "Playback"的 "Add Motion Command"界面选择 "PTP > MOVJ"运动模式。
- 步骤 4 在 "Playback" 界面勾选 "Add At Last"。
- 步骤 5 在 "Playback"的 "Add Motion Command"界面设置 "Vel"和 "Jerk",单击 "Add Motion Command",将步骤 1的信息记录下来。

其中,"Playback"界面的"Vel"和"Jerk"分别为存点回放时各坐标系速度和 加速度变化速率百分比,存点回放的速度为各坐标系存点回放的最大速度乘以 滑动条上显示的百分比,加速度变化率为各坐标系存点回放的最大加速度变化 率乘以滑动条上显示的百分比。

- 步骤 6 在 "Playback" 的 "Add Wait Command" 界面设置上一个存点的暂停时间,并 单击 "Add Wait Command"。
- 步骤 7 参考步骤 1至步骤 6,将机械臂移动至另一点,并存点。
- 步骤 8 在 "Playback" 界面单击 "Start",可使机械臂按存点列表信息运动。

5.4.6 下使能功能调试

用户可通过对电机下使能,使机械臂的电机处于开环的状态,此时可以移动机械臂。

前提条件

- Dobot M1已上电, 且与PC机正常连接。
- 已连接Dobot M1和急停开关。

操作步骤

步骤1 在DobotStudio的 "Operation Panel" 界面单击Motor的 图标,如图 5.13所示。

图 5.13 机械臂下使能

则说明机械臂的电机处于开环状态。

步骤 2 用手移动机械臂,检查是否能移动。 如果机械臂能移动,则说明电机下使能正常。

6. 操作指南

6.1 **DobotStudio** 使用说明

6.1.1 模块说明

Dobot M1支持示教再现、Blockly图形化编程、脚本控制等功能,用户可通过DobotStudio 来控制,DobotStudio界面对应的应用如表 6.1所示。

在DobotStudio的"Applications"界面中,默认打开"Playback"和"Script"页签。如果用户需打开"Blockly"或"I/O Assistant",需在"DobotStudio"界面的"Tools"中选择对应的选项。如果打开后需关闭"Blockly"或"I/O Assistant",则在"Applications"界面双击对应模块的页签即可。

模块	功能
示教&再现	利用示教的方式记录机械臂一系列动作后,让机械臂重复操作记录的动作
Blockly	利用图形化编程的方式控制机械臂。用户可通过拼图的方式进行编程,直观易懂
脚本控制	利用脚本语言控制机械臂
I/O助手	利用I/O Assistant调试用户使用的I/O接口
Web Manager	利用Web Manager进行存点脱机执行,固件升级

表 6.1 DobotStudio 界面模块说明

6.1.2 报警说明

若点动或存点的方法不正确时,比如使机械臂限位或处于奇异点,导致机械臂在运行过 程中可能会产生报警,详细如表 6.2所示。

- 奇异点:如果Dobot M1的J2轴和J1轴速度方向共线,则导致机械臂不能合成 任意速度(大小和方向),只能合成与J2(J1)方向相同的速度,即机械臂自 由度退化,使机械臂不能朝任意方向移动。Dobot M1的奇异点位置为J2轴处 于±20 吃右的位置。存点再现时,MOVJ和JUMP运动模式下采用关节运动模 式,不会产生奇异点位置报警。
- 一般情况下,点动产生报警后若存点,会导致该存点无效,用户需反向移动 坐标系,清除报警信息后再存点。但是若点动导致奇异点位置触发报警,存 点时采用MOVJ或JUMP运动模式,该点可为有效点。
- MOVJ或JUMP运动模式下,如果两点相同,但臂方向不同,机械臂运动时可 能会出现J1、J4轴限位,此时会产生限位报警,需修改报警的存点并重新存 点,并手动清除报警。

文档版本 V1.0.3(2017-11-15)

表 6.2 报警说明

报警条件	清除方法
点动	
关节坐标系限位	反向移动限位的关节坐标系,可自动清除报警
世界坐标系限位	反向移动限位的世界坐标系,可自动清除报警
世界坐标系的点为奇异点	移动世界坐标系的X轴、Y轴或关节坐标系的J2轴, 可自动清除报警
再现	
MOVL运动模式下起始点或结束点为奇异点	需手动清除报警并修改存点
MOVL运动模式下运动轨迹中的某一点为奇异点	需手动清除报警并修改存点
MOVL运动模式下修改存点的臂方向	需手动清除报警并修改存点的臂方向
ARC运动模式下中间点或结束点为奇异点	需手动清除报警并修改存点
ARC运动模式下运动轨迹中的某一点为奇异点	需手动清除报警并修改存点
ARC运动模式下圆弧的三点两两重合	需手动清除报警并修改存点
ARC运动模式下圆弧的三点在同一直线	需手动清除报警并修改存点
所有运动模式下运动轨迹超出工作空间	需手动清除报警并修改存点
所有运动模式下关节限位	需手动清除报警并修改存点

手动清除报警的方法如下:

前提条件

- Dobot M1已上电, 且与PC机正常连接。
- 已连接Dobot M1和急停开关。

操作步骤

- 步骤1 在DobotStudio界面双击产生的报警提示,如图 6.1所示。
 - 弹出"Alarm Log"界面。

DobotStudio-V1.0.3RC		= - o ×
Settings Tools Help		
Connect Control	ERR_MOTOR_R_BATTERY_LOW	Evergency Stop

图 6.1 报警提示示意图

步骤 2 在 "Alarm Log" 界面的 "Dobot Alarm" 页签查看对应的报警,并根据报警解 决方法清除报警,如图 6.2所示。

文档版本 V1.0.3(2017-11-15)

Alarm	Log			×
Dobot A	larm Operation	Log		
Alarm I History	List	Scroll	CHT	
Index	Time	Code	Content	Level
14	17:36:34.779890	168	ERR_MOTOR_R_BATTERY_LOW	1
15	17:36:36.313978	69	ERR_LIMIT_AXIS3_NEG	1
16	17-26-26 212978	160	ERR MOTOR R ENCODER	1 📼
Description Cause The battery capacity of R-axis The connection between R-axis Encoder is too low. The connection between R-axis Encoder and the battery is abnormal. The battery capacity of R-axis Encoder is low. 				
Measure 1.Check the connection between R-axis Encoder and the battery. 2.Replace the battery. 3.Restart R-axis Encoder using Dobot M1 debugging software.				
			ClearAlarm	Quit

图 6.2 报警界面

其中,报警按钮说明如表 6.3所示。

表 6.3 报警按钮说明

按钮	说明
History	是否显示历史报警信息
	 如果History的状态为 (), 报警页 签会显示历史的报警信息供用户查看 如果History的状态为 (), 则仅显示当 前报警
AutoScroll	是否自动滚动报警信息 如果AutoScroll的状态为 , 则自动滚 动报警信息

- 步骤 3 在"Alarm Log"界面的"Dobot Alarm"页签选中对应的报警,单击"Clear Alarm"。 在DobotStudio界面可看到无报警提示,则说明报警信息已清除。
- 6.1.3 ARC 存点说明

文档版 本	V103	(2017 - 11 - 15)	
又怕瓜平	V1.0.5	(2017-11-13)	

ARC与PTP运动模式不同,ARC是圆弧的运动轨迹,需存三个点,才能完成圆弧运动。 CIRCLE运动模式的存点方法与ARC存点方法相同,用户如果采用CIRCLE运动模式,请参见 本章内容进行存点。

前提条件

- Dobot M1已上电, 且与PC机正常连接。
- 已连接Dobot M1和急停开关。

操作步骤

使用ARC运动模式时,ARC只存中间点和结束点,需结合其他运动模式确认圆弧的起始点。ARC运动模式存点时请注意以下情况,以免机械臂产生报警。

- 圆弧三点两两不能重合。
- 圆弧三点不能在同一条直线。
- 圆弧不能超出工作空间。
- 结合其他运动模式时,两种运动模式的存点方向不同,导致机械臂无法运行。

假设圆弧上的三点为A、B、C,A为起始点,C为结束点,如图 6.3所示。

- 步骤1 在DobotStudio的 "Operation Panel" 界面坐标系下拉菜单选择 "Cartesian",单 击世界坐标系按钮,将机械臂移动至一点,记为B点。
- 步骤 2 在DobotStudio界面选择"Applications > Playback"。 进入"Playback"界面。
- 步骤3 在"Playback"界面勾选"Add At Last"。
- 步骤 4 在 "Playback" 界面选择运动模式为 "ARC > Transition Pos", 单击 "Add Motion Command", 将B点信息记录下来。此时, 在 "Playback" 界面运动模式会自动 跳转至 "Target Pos"。
- 步骤 5 在 "Operation Panel" 界面单击单击世界坐标系按钮,将机械臂移动至另一点,记为C点。
- 步骤 6 单击 "Add Motion Command",将C点信息记录下来。

文档版本 V1.0.3 (2017-11-15)

用户手册

版权所有 © 越疆科技有限公司

<u> ▲</u>注意

B点与C点之间不能单击"Add Wait Command"设置暂停时间,否则机械臂无法运行。

- 步骤 7 在 "Operation Panel" 界面单击世界坐标系按钮,将机械臂移动至与B、C不重合的点,记为A点,且与B、C点不在一条直线上。
- 步骤 8 在 "Playback" 界面选择运动模式为 "PTP > MOVJ", 单击 "Add Motion Command", 将A点的信息记录下来。
- 步骤 9 单击 "Start",可看到机械臂以圆弧轨迹运动。ARC存点信息如图 6.4所示。

图 6.4 ARC 运动存点信息

6.1.4 **JUMP**存点说明

用户使用JUMP运动模式存点时,假设A、B两点:

- 如果两点坐标仅Z轴不同,但臂方向相同,则机械臂不会运行。
- 如果两点坐标相同,但臂方向不同,例如A点臂方向为左,B点臂方向为右,则A点
 以右手姿态运行至B点,末端坐标位置相对原点不变。

6.2 示教再现操作

前提条件

- Dobot M1已上电, 且与PC机正常连接。
- 已连接Dobot M1和急停开关。
- 利用示教再现功能对实物进行吸取或者抓取时, Dobot M1需安装气泵和吸盘套件。

文档版本 V1.0.3 (2017-11-15) 用户手册

版权所有 © 越疆科技有限公司

气泵连接请参见3.4 (可选)气泵盒安装。

应用场景

当用户需要对实物进行搬运、智能分拣或者需写字画画时,可采用示教再现功能完成。 本示例以末端夹具为吸盘套件为例进行操作。

操作步骤

- 步骤1 选择一个实物放置于机械臂附近,可在DobotStudio的"Operation Panel"界面 选择如下三种任一方法将机械臂移动至实物上方,假设为A点。机械臂至实物 距离请根据实际情况决定。
 - 在 "Operation Panel" 界面坐标系下拉菜单选择 "Cartesian", 单击世界坐标系 按钮。
 - 在"Operation Panel"界面坐标系下拉菜单选择"Joint",单击关节坐标系按钮。
 - 在"Operation Panel"界面单击Motor的 图标,用手移动机械臂。

⚠注意

- 点动时如果用户需用手移动机械臂,则单击
 使机械臂电机处
 于下使能的状态;如果用户需单击坐标系按钮移动机械臂,则需单击
 使机械臂电机处于使能状态。两者不能同时使用。
- 点动时如果机械臂某一轴限位或者世界坐标系处于奇异点位置,会触发报警, 报警说明请参见表 6.2。产生报警后若存点,会导致该存点无效,用户需移动 坐标系,清除报警信息后再存点。但是若奇异点位置触发报警,存点时采用 MOVJ或JUMP运动模式,该点可为有效点。
- 步骤 2 在DobotStudio界面选择"Applications > Playback"。

进入"Playback"界面。

- 步骤 3 在 "Playback" 界面勾选 "Add At Last"。
- 步骤 4 在 "Playback" 界面选择运动模式为 "PTP>JUMP", 如图 6.5所示, JUMP的 存点约束请参见6.1.4 JUMP存点说明。
 - □□说明

该运动模式仅为示例,用户可根据2.3.4 运动功能以及实际的应用场景来选择运动模式。如果用户采用ARC运动模式存点,请参见6.1.3 ARC存点说明。

图 6.5 运动模式选择示意图

步骤 5 在 "Playback" 右侧 "Add Motion Command" 界面设置存点回放的速度百分比 "Vel"和加速度变化速率百分比 "Jerk", 假设均设为50%, 单击 "Add Motion Command", 将步骤 1的信息存点。

"Playback" 左侧界面显示 "MotionType" 为 "JUMP" 的存点信息, 如图 6.6 所示。

JUMP运动模式下其抬升高度(Height)和最大抬升高度(Limit)需在当前存 点的"Content"里修改。

图 6.6 坐标值显示示意图

步骤 6 在 "Playback" 右侧的 "Add Wait Command" 界面设置A点的暂停时间, 假设为3秒, 并单击 "Add Wait Motion"。

"Playback" 左侧界面会显示 "MotionType" 为 "Wait" 的存点信息。

步骤7 利用末端的吸盘套件吸住实物。

假设使用底座I/O接口的"DOUT01"、"DOUT02"控制气泵。DOUT01 控制气泵 的吸气和出气,DOUT02控制气泵的启停。本操作仅为示例,在真实场景中,用户 使用的I/O接口不同,输出的I/O引脚也会不同,请用户根据实际情况替换。

- 在 "Playback" 右侧的 "Add I/O Command" 界面选择 "Output"。
 Playback" 左侧会界面会显示 "MotionType" 为 "Output" 的存点信息。
- 在 "Playback" 左侧界面选中 "MotionType" 为 "Output" 的存点,双击 "Content"。

弹出"EIO Setting"窗口。

- 3. 在 "EIO Setting" 界面的I/O输出引脚的下拉框中选择 "OUT01", 并选中 "High", 单击 "Add"。
- 4. 重复执行3, 添加 "OUT02", 并选中 "High", 单击 "OK"。

"Placyback" 左侧界面的"MotionType"为"Output"的存点会显示I/O引 脚的相关信息,如果单击鼠标右键选择"RunSelected",气泵会吸气,实物会被机械臂吸住。

步骤 8 在 "Operation Panel" 界面坐标系下拉框选择 "Cartesian", 单击 "Z+" 升高机

文档版本 V1.0.3(2017-11-15) 用户手册 版材

械臂,并单击坐标系面板上的其他按钮,如"X+",将机械臂移动至另外一点, 假设为B点。

- 步骤9 参考步骤4至步骤6,记录B点的存点信息。
- 步骤10 利用末端的吸盘套件释放实物。

假设使用底座I/O接口的"DOUT01"、"DOUT02"控制气泵。本操作仅为示例,在 真实场景中,用户使用的I/O接口不同,输出的I/O引脚也会不同,请用户根据实际 情况替换。

- 在 "Playback" 右侧的 "Add I/O Command" 界面选择 "Output"。
 "Playback" 左侧会界面会显示 "MotionType" 为 "Output" 的存点信息。
- 在 "Playback" 左侧界面选中 "MotionType" 为 "Output" 的存点,双击 "Content"。

弹出"EIO Setting"窗口。

- 3. 在 "EIO Setting" 界面的I/O输出引脚的下拉框中选择 "OUT01", 并选中 "Low", 单击 "Add"。
- 4. 重复执行3, 添加 "OUT02", 并选中 "High", 单击 "OK"。

"Placyback" 左侧界面的"MotionType" 为"Output"的存点会显示I/O引 脚的相关信息,如果单击鼠标右键选择"RunSelected",气泵会出气,实 物被机械臂释放。

□□说明

当前仅为一条运动轨迹的示例。用户可参考步骤 1至步骤 10来记录多条运动轨 迹。

步骤 11 在 "Playback" 界面单击 "Save"。

弹出保存的对话框。

- 步骤 12 输入存点列表的名称和保存路径。存点列表的默认保存路径为"安装目录 /DobotStudio/config/pbstore",用户可根据实际情况替换。
- 步骤 13 在 "Playback" 界面单击 "Start", 机械臂根据存点列表回放运动轨迹, 对实物进行吸取和释放。
- 存点后,用户可对"Playback"左侧界面的存点列表执行如下操作:
- 在"Playback" 左侧界面的存点列表选中某一条存点信息,双击修改存点信息,存 点信息如图 6.7所示。可修改的参数如表 6.4所示。

图 6.7 当前存点参数信息

参数	说明	
MotionType	机械臂的指令类型	
	取值范围:	
	• JUMP	
	• MOVJ	
	• MOVL	
	• ARC	
	• CIRCLE: CIRCLE存点方法与ARC的存点方法相同,请参见6.1.3	
	ARC存点	
	• Trigger	
	• Output	
	• Wait	
Name	当前存点的名称,用户自定义	
Content	根据不同的指令展示不同的内容,用户可双击"Content"修改其内容	
	• MOVL/MOVJ/JUMP/ARC/CIRCLE: 坐标值以及存点回放的速度百	
	分比和加速度变化速率的百分比	
	• Trigger: I/O引脚的输入电平	
	• Output: I/O引脚的输出电平	
	• Wait: 上一个存点的暂停时间	

表 6.4 存点参数说明

文档版本 V1.0.3(2017-11-15)

参数	说明
ArmOrientation	当前存点的臂方向,当前仅"MotionType"为MOVJ、JUMP、ARC、CIRCLE时才能修改
	在MOVL运动模式下,如果修改当前存点的臂方向,会出现左右手切换报 警
	如果当前存点的"MotionType"为"MOVL"、"ARC"或"CIRCLE"时, 其方向需与上一个存点的方向相同
	取值范围: Right
	• Left

• 选中某一条存点单击鼠标右键,对存点进行复制、删除等操作,如图 6.8所示。

🧿 Dobo	tStudio-V1.0.3RC	
Settings	Tools Help	
	Disconnect COMI3	О ровот
	Applications	
Playback	Script Blockly	
New	Open Save As Start Stop Loop 1	
Option V	Index MotionType ArmOrientation Name Content	Loop Add At Last
	0 MOVJ Left Copy 2.8193,378.747,60.0,44	0 1 Olnsert In Selected Row
	Paste Cut Delete MoveUp MoveDown DeleteAll RunSeleted	OverWrite Selected Row Add Motion Command TTP OverWrite Selected Row Vel 50 % + Jerk 50 % + Add Wait Command 1.00 s Add I/O Command Output Trigger

图 6.8 存点列表右键选项

• 在"Playback"界面设置存点回放的循环次数,最大值为9999,也可直接勾选"Infinite Loop",使机械臂根据存点列表处于无限循环回放的状态,如图 6.9所示。

DobotStudio-V1.0.3RC Settings Tools Halp			= -	□ ×
Disconnect Cours	Ф ровот		Energency Stop)
Applications		Operatio	on Panel	≡ •
Playback Script Blockly		X 42. 4921	Joint1 -74.93	58
🕒 🚍 🖪 🔜 🕨		Y -392.9019	Joint2 -17.78	33
New Open Save SaveAs Start Stop Loop 1		Z 60.0000	Joint3 60.000	0
Option Index MotionType ArmOrientation Name Content		R =116.2902	Joint4 -23.57	10

图 6.9 存点列表回放的循环次数设置示意图

• 存点前,可在"Playback"界面右侧对新增存点的位置进行选择,如图 6.10所示。

🧿 Dobo	tStudio	-V1.0.3RC				
Settings	Tools	Help				
(Discon	inect 192	. 168. O. 210 (Dobot N	a) (*		
				Applications		
Playback	s	cript				
New	Open	R Save	SaveAs Star	t Stop I		
Option V	Index	MotionType	ArmOrientation	Name Content	Loop	🔵 Add At Last
	0	MOVJ	Right	To(400.0,0.0,0.0,0.0),Vel/Jerk(50	%,50%) 1	Insert In Selected Row
	1	WAIT	Right	Pause 1.0 s	1	OverWrite Selected Row
	2	MOVJ	Right	To(400.0,0.0,0.0,0.0),Vel/Jerk(50	%,50%) 1	
						Add Motion Command
						PTP 🕜 MOVJ 💎
						Jerk — 50 % +
						Add Wait Command
						Add I/O Command
						Output OTrigger

图 6.10 覆盖当前存点示意图

存点位置详细说明如表 6.5所示。

表 6.5 存点位置说明

存点位置	说明
Add At Last	新增存点,即在最后一个存点后插入存点
Insert In Selected Row	在当前存点前插入存点
OverWrite Selected Row	覆盖当前存点

- 当"MotionType"为运动模式,修改"Content"内容时,除了手动输入坐标值,还 可通过点动控制面板来修改。
 - 1. 选中待修改的存点,双击"Content"。
 - 弹出"Motion Setting"界面。如图 6.11所示。

图 6.11 修改当前存点示意图

- 2. 参考6.2 中的步骤 1,在点动控制面板单击坐标系按钮移动机械臂,用户可在 "Operation Panel"界面查看机械臂移动时的坐标。
- 3. 单击"Get Current Pose",获取机械臂的坐标。
- 4. 单击"OK",保存修改后的存点。

6.3 脚本控制操作

前提条件

- Dobot M1已上电, 且与PC机正常连接。
- 已连接Dobot M1和急停开关。
- 文档版本 V1.0.3 (2017-11-15) 用户手册

版权所有 © 越疆科技有限公司

应用场景

用户可通过脚本控制机械臂的运行,Dobot M1提供丰富的API接口,如速度/加速度设置、运动模式设置以及I/O配置等,采用Python脚本语言开发,可供用户二次开发时调用。

Dobot M1支持的API接口以及详细的功能描述请参见配套版本的《Dobot API接口文

档》,下载路径为<u>http://cn.dobot.cc/downloadcenter/dobot-m1.html#most-download</u>。

操作步骤

步骤1 在DobotStudio界面选择"Applications > Script"。

进入"Script"界面。

步骤2 编写控制脚本。

用户可在"Script"左侧界面双击需调用的接口,此时会在脚本文件窗口显示 相应的接口,如图 6.12所示。其接口的参数设置方法可单击"Script"左侧界

面 对 应 接 口 的 ♀ 查 看 。 脚 本 编 程 示 例 可 参 考 " *安 装 目 录* /DobotStudio/config/ststore/Example.script"。

⚠注意

使用脚本编程时,如果使用运动指令,则需在每一条运动指令前加上方向指令,表示机械臂的运动方向。

Flayback Script Blockly		
New Open Save SaveAs Close	CloseAll Add Avient Store	
Search	est Exaple	pallet (row:11,col:8)
+ Other	Marco deba-Mederated a to	<u>_</u>
	(Type: Set PTPCnd (and . 0, 223, 276, 60, 64, 1)	
dType.GetQueuedCmdLurrentinde	dTrue SetWilTCad (ani, 1000, 1)	
dType.SetQueuedCmdStartExec(a)		
ZdType.SetQueuedCmdStopExec(ap 14	dType.SetArmOrientation(api, 1, 1)	
dType.SetQueuedCmdForceStopEx15	dType.SetPTPCmd(api, 0, 223, 276, 60, 64, 1)	
dType.SetQueuedCmdClear(api)	dType.SetWAITCmd(api, 1000, 1)	
+ Pose	dType Set3mOrientation(ani 0 1)	
+ Alarms 19	dType.SetPTPCmd(api, 1, 244, -136, 80.0, 1)	
+ HandTeach 20	dType.SetWAITCad(api, 1000, 1)	
+ ArmOrientation 21		
+ JOG 22	dType.SetArmOrientation(api, 1, 1)	
- РТР	dType.SetPTPCmd(ap1, 1, 244, -136, 80,0, 1)	
?dType.SetPTPJumpParams(apl, jump)	drype.setwArrcmd(ap1, 1000, 1)	
7 dType.GetPTPJumpParams(api) 20	dTrme.SetArmOrientation(ani, 1, 1)	
2 dType.SetPTPCommonParams(api 27	dType.SetPTPCmd(api, 2, 258, 177, 120, 0, 1)	
2 dType, GetPTPCommonParams(ap 28	dType.SetWAITCmd(api, 1000, 1)	
2 dType SetPTPC md(api pmMode x 20		
+ ABC	dType.SetArmDrientation(api, 0, 1)	
+ WAIT	dType.SetPTPCmd(ap1, 0, 307, 195, 120, 0, 1)	
- TPIG	drype.secmaticmd(api, 1000, 1)	
		-
Runni	ng Log:	
- In the second		

图 6.12 脚本控制示意图

步骤 3 在 "Script" 界面单击 "Save"。

弹出保存的对话框。

- 步骤4 输入脚本的名称和保存路径。脚本的默认保存路径为"安装目录 /DobotStudio/config/ststore",用户可根据实际情况替换。
- 步骤 5 在 "Script" 界面单击 "Start", 机械臂会根据编写的脚本运动。 在 "Script" 界面下方会实时打印运行日志,可供用户查看。
- 6.4 Blockly 操作

前提条件

文档版本 V1.0.3(2017-11-15)	用户手册	版权所有 © 越疆科技有限公司
-------------------------	------	-----------------

- Dobot M1已上电, 且与PC机正常连接。
- 已连接Dobot M1和急停开关。

应用场景

Blockly 是Dobot M1开发的一套图形化编程平台,基于谷歌的开源平台 Google Blockly。 通过该平台,用户可通过拼图的方式进行编程来控制Dobot M1的运行,直观易懂。

操作步骤

步骤1 在DobotStudio界面选择"Tools > Blockly"。

进入"Blockly"界面。

步骤 2 在 "Blockly" 界面左侧拖动图形化模块进行编程, 如图 6.13所示。

Playback Script	Eloskly
New Open	a Ra North Stop
Logic . Loops . Math	Running Log: Debot prepare already, can to edit!
Text	t Coordinate Speed VelocityRatio (20) JerkRatio (50)
Lists Colour	t Jump Params JumpHeight 1 20 ZLimit 1 200
Variables Eunctions	Set Arm Orientation Left -
▼ DobotAPI	Jump To X () 223 Y () 276 Z () 60
Basic Config	Jump To X 1 223 Y 1 276 Z 1 60
Motion I/O	Set Arm Orientation Right City of Set and Windows and City of Color (2000) (7) (h) Set and City of
	Gold X 258 Y 177 Z 120
	2 . current_pose = dType. GetPose(api) dType. SetPTFCaddra(api, 2, 258, 177, 120, current_pose[3], 1
	4
•	

_

使用Blockly图形化编程时,当前仅支持MOVL和JUMP运动指令。使用运动指令时, 需在每一条运动指令前加上方向指令,表示机械臂的运动方向。

图 6.13各模块说明如表 6.6所示

表 6.6 Blockly 模块说明

四相 孫式 紫光の日
逻辑、循环、数字以及 ckly编程窗口即可编程
」 应的程序代码

文档版本 V	(1.0.3 (2017-11-15)	用户手册	版权所有 © 越弱	 副科技有限公司

- 步骤 3 在 "Script" 界面单击 "Save"。
 - 弹出保存的对话框。
- 步骤 4 输入图形化编程文件的名称和保存路径。图形化编程文件的默认保存路径为 "安装目录/DobotStudio/config/bystore",用户可根据实际情况替换。
- 步骤 5 在 "Blockly" 界面单击 "Start", 机械臂会根据编写的程序运动。

6.5 I/O 助手操作

前提条件

- Dobot M1已上电, 且与PC机正常连接。
- 己连接Dobot M1和急停开关。
- Dobot M1已安装气泵。

应用场景

当用户外接末端夹具如吸盘、手爪时,需配合气泵配套使用。气泵的启停通过I/O接口 来控制。可通过"I/O Assistant"调试使用的I/O接口和气泵功能是否正常。

操作步骤

假设吸盘套件的气泵连接底座I/O接口,使用的I/O引脚为DOUT01、DOUT02。详细请参见3.4 (可选)气泵盒安装。其中,DOUT02的高电平为气泵启动,其低电平为气泵停止。

步骤1 在DobotStudio界面选择"Tools > I/O Assistant"。

进入"I/O Assistant"界面。

步骤 2 在 "I/O Assistant"的 "Output" 界面单击 "OUT02"的 "High", 如图 6.14所示。

🧿 DobotStud	dio-V1.0.1RC										
Settings To	ools Help										
Disc	onnect COM3		D			Q	ровот				
				Applic	ations						
Playback	Script IOAssistant	Blockly									
Input					Outp	out					
IN01	●High ●Low	AD01	Value	0	c	OUT01	●High ●Low		DA01	Value	0
IN02	💿 High 💿 Low	AD02	Value	0	c	DUT02	●High ●Low		DA02	Value	0
IN03	⊙High ●Low	AD03	Value	0	c	DUT03	●High ●Low				
IN04	🕘 High 💿 Low	AD04	Value	0	C	DUT04	●High ●Low				
IN05	⊙High ●Low	AD05	Value	0	C	OUT05	●High ●Low				
IN06	🕘 High 💿 Low	AD06	Value	0	C	OUT06	●High ●Low				
IN07	🕘 High 💿 Low				C	DUT07	●High ●Low				
IN08	⊙High ●Low				C	SOTUC	●High ●Low				
IN09	💿 High 💿 Low				C	OUT09	●High ●Low				
IN10	⊙High ●Low				C	OUT10	●High ●Low				
IN11	🕘 High 💿 Low	8 - E			C	DUT11	●High ●Low				
IN12	💿 High 💿 Low				C	OUT12	●High ●Low	÷.,			
IN13	💿 High 💿 Low				C	DUT13	●High ●Low				
IN14	⊙High ●Low				(DUT14	●High ●Low	Ι.			
IN15	⊙High ●Low				(DUT15	●High ●Low				
IN16	●High ●Low	Ţ			C	OUT16	●High ●Low	Ļ			

图 6.14 I/O 功能调试示意图

文档版本 V1.0.3(2017-11-15)

气泵发出嗡嗡的声音,表示气泵处于工作状态。不同的气泵处于工作时的状态 不同,请根据实际情况判定。

步骤 3 在 "I/O Assistant" 的 "Output" 界面单击 "OUT02" 的 "Low"。 气泵停止嗡嗡的声音,表示气泵处于关闭状态。

6.6 在线管理操作

Dobot M1在线管理工具箱集成了脱机文件管理、固件更新、应用更新等功能,用于上传脱机文件,控制DobotM1脱机运行以及应用更新等。

6.6.1 脱机管理

用户可利用Dobot M1在线管理工具将保存在本地PC的脚本、Blockly程序和存点列表上 传至Dobot M1,实现Dobot M1脱机运行。

通过Dobot M1在线管理工具启动脱机运行后,Dobot M1会与DobotStudio断开连接。如果需停止脱机运行,需通过Dobot M1在线管理工具停止。

前提条件

- DobotStudio已启动。
- 己通过网线直接将Dobot M1与PC机连接或通过路由器将Dobot M1与PC机连接。
- Dobot M1已上电。
- Dobot M1与PC机在同一网段,详细请参见5.4.3 IP 设置。
- Script脚本、Blockly程序或存点列表已存在。
- 已连接Dobot M1和急停开关。

应用场景

当用户需Dobot M1脱机运行时,可使用脱机管理功能。

操作步骤

- 步骤 1 在DobotStudio界面选择 "Tools > Web Manager"。 进入"Web Manager"界面。
- 步骤 2 在"Web Manager"界面左上方的IP下拉菜单选择Dobot M1对应的IP地址。 进入对应Dobot M1的在线管理界面。
- 步骤 3 在"Web Manger" 左侧导航树上选择"Offline Script Management"。 进入"Offline Script Management"的页面。
- 步骤 4 在脱机脚本管理的界面单击 "Add File"。 进入上传脱机脚本界面。
- 步骤 5 在上传脱机脚本的界面单击 "Select the Files to Upload"。 弹出上传文件的对话框,如图 6.15所示。

→ ✓ ↑	s 10 (C:) > Program Files > DobotStudio_M1_05 >	config > ststore ~ ඊ	Search ststore	Q
rganise 🔻 New folder			8	- 🗆 🛙
DobotStudio_M1	^ Name ^	Date modified	Туре	Size
DobotStudio_M1_01	Example.script	16/10/2017 11:58	SCRIPT File	2 KE
DobotStudio_M1_02				
DobotStudio_M1_03				
DobotStudio_M1_04				
DobotStudio_M1_05				
attachment				
config				
bystore				
firmware				
📙 layout				
📙 media				
pbstore				
prefab				
ststore	•			
File earner				

图 6.15 上传脱机文件对话框

- 步骤 6 在文件所在目录选择需脱机运行的文件,单击"Open"。 仅支持上传后缀为.playback、.blockly、.script的文件。
- 步骤 7 单击"Upload"。可查看上传的状态,如图 6.16所示。

Upload Offline Script			
Information	Properties	Status	
Example.script	Speed9.2547534572609138/S	Uploaded	
Size1.02K	Details1.02K / 1.02K		
L			-

步骤 8 在 "Offline Script Management" 界面选中需脱机运行的文件,单击 "Offline", 使文件处于离线运行的状态。用户可将多个文件处于离线运行的状态,如图 6.17所示。

Offline Script M	lanage	ment		
+ Add File Elect	c All 👔	Delete Lat		•
Name	Туре	Whether run as offline mode	Time	Operation
				Cancel Offline
				Offline Delete Download
				Offline Delete Download

图 6.17 脱机管理文件状态

文档版本 V1.0.3(2017-11-15)

步骤9 在"Web Manager"界面左侧的导航上选择"Home"。

进入首页界面。

步骤 10 在首页界面的"Mode Switch Controlling"面板的下拉菜单选择"Offline Mode", 并单击"Start",如图 6.18所示,使Dobot M1处于"Offline Mode"状态,Dobot M1与DobotStudio断开连接,机械臂根据离线运动状态的文件运行。

Mode Switch Controlling	٥
Offline Mode 🔻	Dobot Mode Current Mode
Start 🛗 Stop	

图 6.18 Dobot M1 状态切换控制

6.6.2 **应用升级**

当Dobot M1的固件或其他应用有升级时,可使用在线管理工具箱对固件或应用进行升级。本节以固件升级为例进行操作。

前提条件

- 已通过网线直接将Dobot M1与PC机连接或通过路由器将Dobot M1与PC机连接。
- Dobot M1已上电。
- 己连接Dobot M1和急停开关。
- Dobot M1与PC机在同一网段,详细请参见5.4.3 IP 设置。
- 已获取最新的固件。

操作步骤

- 步骤1 在DobotStudio界面选择 "Tools > Web Manager",。 进入 "Web Manager" 界面。
- 步骤 2 在"Web Manager"界面左上方的IP下拉菜单选择Dobot M1对应的IP地址。 进入对应Dobot M1的在线管理界面。
- 步骤 3 在 "Web Manager" 界面的左侧导航树选择 "Update Firmware"。 进入 "Update Firmware" 界面,如图 6.19所示。

Update Firmware				
Hadata Tura	Propostion	tel activiarian		Onsertion
Dobot Firmware:- Size-	Speed:- Details-	Waiting	Valt for uploading	One-click Update
3D Printing Firmware:- Size-	Speed:- Details-	Waiting	Wait for uploading	One-click Update
	Speed:- Details-	Waiting	Wait for uploading	One-click Update
Driver1:- Size-	Speed:- Details-	Waiting	Wait for uploading	One-click Update

图 6.19 主控板固件更新界面

步骤 4 选中待升级的固件,单击"One-click Update"。 弹出上传固件的对话框,如图 6.20所示。

🧿 Open					×
← → · ↑ 📙 F:\Public\DobotM1\Firmwa	are\DobotM1		ٽ ~	Search DobotM1	Q
Organise 🔻 New folder				800	• 🔳 🕐
Users	^	Name	Date modified	Туре	Size
Windows		🛃 changelog.txt	30/10/2017 08:44	Text Document	1 KB
🔜 Data2 (D:)		DobotM1_loader_V1.0.2.hex	19/10/2017 17:55	HEX File	365 KB
🕳 资料 (E:)		DobotM1_loader_V1.1.0.hex	24/10/2017 14:39	HEX File	367 KB
🔜 Data1 (F:)		DobotM1_V1.0.2.hex	19/10/2017 17:55	HEX File	365 KB
\$RECYCLE.BIN		DobotM1_V1.1.2.hex	30/10/2017 08:44	HEX File	376 KB
Perconal		DobotM1_V1.1.3.hex	30/10/2017 08:44	HEX File	375 KB
D LI		M1App_V1.1.1.hex	26/10/2017 10:57	HEX File	494 KB
OPUBLIC		M1App_V1.1.2.hex	30/10/2017 08:44	HEX File	504 KB
.svn		M1App_V1.1.3.hex	30/10/2017 08:44	HEX File	504 KB
DobotM1					
🥭 A9					
💋 DobotStudio					
or Firmware					
Bootloader					
DobotM1	~				
File name:					~
				Open	Cancel

图 6.20 上传固件对话框

步骤 5 在固件所在目录选中最新的固件,单击"Open"升级固件。 用户可查看固件升级的进度,如图 6.21所示。

Update Firmware						
Update Type	Properties	IsLastVersion	Status		Operation	
Dobot Firmware:DobotM1_V1.1.4.hex Size376.89K	Speed:1015.88K/S Details376.89K / 376.89K	Waiting	上传成功	100%	One-click Update	

图 6.21 固件升级进度

6.7 操作示例

6.7.1 运动轨迹示例

本节根据实际的运动轨迹描述机械臂运动过程中需采用的运动模式。 运动轨迹如图 6.22所示,其空间坐标图如图 6.23所示。

<u>▲</u>注意

本节仅根据运动轨迹示例说明示教再现时需采用的运动模式以及注意事项,不针对运动轨迹做详细描述。示教再现的方法请参见6.2 示教再现操作。

图 6.22 运动轨迹

图 6.23 空间坐标

假设A点为起始点,J点为结束点,A点至J点的坐标如表 6.7所示。

文档版本 V1.0.3(2017-11-15)

表 6.7 空间坐标值

位置	坐标值(x,y,z,r)
A	(270,-244,110,0)
В	(400,0,110,0)(奇异点)
С	(366,111,110,0)
D	(194,111,110,0)
E	(194,277,110,0)
F	(85,250,110,0)
G	(-44.4458,239.5284,110,33.08)(圆弧中间点)
Н	(-120.6913,164.5902,110,65.6601)
Ι	(372.225,-63.2786,110, -148.8402)
К	(351.7533,-113.7360,110,-160.2802)(圆中间点)
J	(323.1731,-115.7006,110, -170.5002)

存点示例如图 6.24所示。

Index	MotionType	ArmOrientation	命名	Content	循环
0	моу	Right		To(270.0,-244.0,110.0,0.0),Vel/Jerk(50%,50%)	
1	MOVJ	Right		To(400.0,0.0,110.0,0.0), Vel/Jerk(50%,50%)	1
2	JUMP	Right		To(366.0,111.0,110.0,0.0), Vel/Jerk(50%,50%), Height/Limit(20.0,200.0)	1
3	MOVL	Right		To(194.0,111.0,10.0,0.0),Vel/Jerk(50%,50%)	1
4	MOVL	Right		To(194.0,277.0,110.0,0.0),Vel/Jerk(50%,50%)	1
5	JUMP	Right		To(85.0,250.0,110.0,0.0), Vel/Jerk(50%,50%), Height/Limit(20.0,200.0)	1
6	ARC	Right		Via(-44.4458,239.5284,110.0,33.08),To(-120.6913,164.5902,110.0,65.6601),Vel/Jerk(50%,50%)	1
7	JUMP	Left		To(372.225,-63.2786,110.0,-148.8402),Vel/Jerk(50%,50%)	1
8	CIRCLE	Left		Via(351.7533,-113.736,110.0,-160.2802), To(323.1731,-115.7006,110.0,-170.5002), Vel/Jerk(50%,50%)	1

图 6.24 存点示例

- AB段(0->1):运动轨迹为非直线,且B点为奇异点,则不能采用MOVL或ARC的运动模式,需采用MOVJ运动模式。奇异点说明请参见6.1.2 报警说明。
- BC段(1->2):运动轨迹为门型,则采用JUMP运动模式。存点时还需在"Content" 设置Height和Limit的高度。JUMP运动模式的运动轨迹和Height和Limit的高度有关,详细请参见2.3.4.2 点位模式(PTP)。
- CD段(2->3):运动轨迹为直线,则采用MOVL运动模式。存点时需注意D点的臂 方向需与C点的臂方向保持一致,否则会出现报警。
- DE段(3->4):运动轨迹为直线,则采用MOVL运动模式。存点时需注意E点的臂方向需与D点的臂方向保持一致。
- EF段(4->5):运动轨迹为门型,则采用JUMP运动模式。存点时还需设置Height和 Limit的高度。

文档版本 V1.0.3(2017-11-15)

- F-G-H段(5->6):运动轨迹为圆弧,则采用ARC运动模式。除了F、H点,还需存中间点G。ARC存点方法请参见6.1.3 ARC存点说明。存点时还需注意F点的臂方向需与G、H点的臂方向保持一致。
- HI段(6->7):运动轨迹为门型,则采用JUMP运动模式。存点时需还需在"Content" 设置Height和Limit的高度。
- I-K-J段(7->8):运动轨迹为圆形,则采用CIRCLE运动模式。除了I、J点,还需存中间点K。存点方法与ARC存点方法相同。存点时还需注意I点的臂方向需与K、J点的臂方向保持一致,否则会出现报警。

6.7.2 **外接驱动示例**

无外加电源的情况下,Dobot M1的I/O接口数字输出信号的电流为2mA。外加供电电源的情况下,数字输出信号的电流支持3A。当通过I/O接口连接的控制器件要求驱动能力较大时,Dobot M1的默认驱动能力无法满足要求,此时需外接驱动电路增加驱动能力。本节以外接电磁阀为例进行说明。

图 6.25为无外加电源情况下I/O外接控制器件电路示意图,其中VCC_24V为Dobot M1 I/O接口的输出电压,OUTx为I/O接口上的数字输出引脚(假设OUT0和OUT1),用户在实际使用时请参见4.3 接口说明选择正确的引脚。

图 6.25 默认驱动情况下 I/O 外接控制器件

图 6.26为外加电源的情况下I/O外接控制器件电路示意图,红框中的电路为外接驱动电路。用户可参见图 6.26外接驱动电路以满足驱动能力要求。其中:

- VCC_24V为Dobot M1 I/O接口上的输出电压,OUTx为I/O接口上的数字输出引脚 (假设OUT0和OUT1),GND为Dobot M1 I/O接口上的接地端,用户在实际使用时 请参见4.3 接口说明选择正确的引脚。
- 24V为外部电压,PGND为外部电压对应的接地端。

用户手册

图 6.26 增加驱动电路情况下 I/O 外接控制器件

6.7.3 同一点改变臂方向示例

MOVJ或JUMP运动模式下,如果两点相同,但臂方向不同,机械臂运动时可能会出现J1 或J4轴限位,此时会产生限位报警,用户需重新存点清除报警。

R轴坐标为J1、J2和J4坐标之和,Dobot M1运动时R轴会相对于坐标原点保持姿态不变。同一点切换臂方向后各关节坐标计算方法如表 6.8所示。

切换前	切换后
R=J1+J2+J4	R'=R=J1'+J2'+J4'
J1	J1'=J1+J2
J2	J2'=-J2
J3	J3'=J3
J4	J4'=R-J1'-J2'

表 6.8 关节坐标计算方法

根据表 6.8所示,切换后R轴坐标保持不变,J1轴的坐标为切换前J1和J2坐标之和。假设 切换前J1轴坐标为10°,J2轴坐标为90°,则切换后J1轴的坐标为100°,导致J1轴限位,产 生限位报警。同理,J4轴也会出现同样情况的报警。在实际应用中,如果存在连续两点相同 但臂方向不同的场景,需注意J1轴和J4轴的位置,可参考表 6.8计算J1和J4轴的坐标,以免 出现限位报警。

用户手册