

DobotSCStudio User Guide

Issue: V1.0

Date: 2020-06-03

Shenzhen Yuejiang Technology Co., Ltd

Copyright © Shenzhen Yuejiang Technology Co., Ltd 2020. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without the prior written consent of Yuejiang Technology Co., Ltd

Disclaimer

To the maximum extent permitted by applicable law, the products described (including its hardware, software, and firmware, etc.) in this document are provided **AS IS**, which may have flaws, errors or faults. Yuejiang makes no warranties of any kind, express or implied, including but not limited to, merchantability, satisfaction of quality, fitness for a particular purpose and non-infringement of third party rights. In no event will Yuejiang be liable for any special, incidental, consequential or indirect damages resulting from the use of our products and documents.

Before using our product, please thoroughly read and understand the contents of this document and related technical documents that are published online, to ensure that the robot is used on the premise of fully understanding the robot and related knowledge. Please use this document with technical guidance from professionals. Even if follow this document or any other related instructions, Damages or losses will be happening in the using process, Dobot shall not be considered as a guarantee regarding all security information contained in this document.

The user has the responsibility to make sure following the relevant practical laws and regulations of the country, in order that there is no significant danger in the use of the robot.

Shenzhen Yuejiang Technology Co., Ltd

Address: Address: Floor 9-10, Building 2, Chongwen Garden, Nanshan iPark, Liuxian Blvd, Nanshan District, Shenzhen, Guangdong Province, China

Website: www.dobot.cc

Issue V1.0 (2020-06-03)

Preface

Purpose

This manual introduces the functions and usage of the robot control software DobotSCStudio, which is convenient for users to understand and use robot.

Intended Audience

This document is intended for:

- Customer
- Sales Engineer
- Installation and Commissioning Engineer
- Technical Support Engineer

Change History

Date	Change Description
2020/06/03	The first release

Symbol Conventions

The symbols that may be founded in this document are defined as follows.

Symbol	Description
	Indicates a hazard with a high level of risk which, if not avoided, could result in death or serious injury
	Indicates a hazard with a medium level or low level of risk which, if not avoided, could result in minor or moderate injury, robot damage
	Indicates a potentially hazardous situation which, if not avoided, can result in equipment damage, data loss, or unanticipated result
ANOTE	Provides additional information to emphasize or supplement important points in the main text

Contents

1. Fund	ction De	scription		
1.1	Overvie	ew		
	1.1.1	Main Interface Descri	ption	1
1.2	Settings	3		
	1.2.1	Setting Motion Param	eter	
	1.2.2	Setting User Coordina	ate System	6
	1.2.3	Setting Tool Coordina	te System	
	1.2.4	Homing		
	1.2.5	Calibration		
	1.2.6	VirtualRobot		
	1.2.7	Log		
	1.2.8	Language		
	1.2.9	Network Service		
1.3	Monito	r		
	1.3.1	I/O Monitor		
1.4	Remote	Control		
	1.4.1	Remote I/O		
	1.4.2	Remote Modbus		
1.5	Program	nming		
	1.5.1	Project Description		
	1.5.2	Programming Panel D	Description	
	1.5.3	Programming Descrip	otion	
1.6	Enablin	.g		
1.7	Setting	Global Velocity Rate		
1.8	Alarm l	Description		
2. Prog	ram La	nguage		44
2.1	Arithm	etic Operators		
2.2	Relation	nal Operator		
2.3	Logical	Operators		
2.4	Genera	Keywords		
2.5	Genera	l Symbol		
2.6	Process	ing Control Command	s	
2.7	Global	Variable		
2.8	Motion	Commands		
2.9	Motion	Parameter Commands		
2.1	0 Input/or	utput Commands		
2.1	1 Program	n Managing Command	s	
2.1	2 Pose G	etting Command		
2.1	3 TCP			
2.1	4 UDP			
2.1	5 Modbu	5		
	2.15.1	Modbus Register Des	cription	
Issu	e V1.0 (20	20-06-03)	User Guide	Copyright © Yuejiang Technology Co., Ltd

	2.15.2	Command Description	72
2.16	5 ECP		75
2.17	7 Process	s Command	77
	2.17.1	Conveyor Tracking Command	77
	2.17.2	Pallet Commands	79
3. Proc	ess Gui	de	85
3.1	Convey	yor Tracking	85
	3.1.1	Overview	85
	3.1.2	Building Environment	85
	3.1.3	Calibrating Conveyor	87
	3.1.4	Configuring Conveyor	91
	3.1.5	Example	103
3.2	Palletiz	ring	107
	3.2.1	Overview	107
	3.2.2	Setting Pallet	108
	3.2.3	Example	
4. Typi	cal App	olications	
4.1	Modbu	s Application	113
4.2	I/O App	plication	115
	4.2.1	Grabbing Bottle Application	115

1. Function Description

1.1 Overview

A SC series controller is equipped with DobotSCStudio, providing secondary development and various kinematic algorithms for mechanical structures, which are suitable for various applications.

1.1.1 Main Interface Description

Figure 1.1 shows the main interface of DobotSCStudio, Table 1.1 lists the interface description.

				456789	
	DobotSCS	tudio			
1 <u> </u>			Dobot: Copyright 2020. Shenzhen	SCStudio Yuejiang Technology Coltd	
5		Instruction Manual —	Software User Manual Alarms Manual	Script Syntax Manual	10
		Application Case			10
			Conveyor Belt Tracking Matrix Pallet	Remote Control Teach Pallet	
		Feedback			
			Fe	edback	

Figure 1.1 Main interface

No.	Description
1	Project
	You can build or import a project, and debug or run it
2	Jog
	Jog the robot in different coordinate systems. This
	function is valid only when DobotSCStudio is set to the
	manual mode
	Jog the robot in the Joint coordinate system: From top
	to bottom, jog J1, J2,, and J6
	Jog the robot in the Cartesian coordinate system: From
	top to bottom, jog the X, Y, Z, R(A-axis), B, and C
3	System

Table 1.1	Interface description
-----------	-----------------------

No.	Description
	You can set system configurations. Such as NetworkSetting, RobotParams, Coordinate, Process
4	 You can click the icon to change manual mode and auto mode. In manual mode, indicate the motor status (enabled or disabled) In auto mode, indicate that you can click this button to control the motor
5	 In manual mode, indicate the motor status (enabled or disabled) In auto mode, indicate that you can click this button to control the motor
6	Check robot alarm When an alarm is triggered, this icon will turn red You can check the alarm details on the operation panel and clear it in the manual mode
7	Set global velocity rate
8	 Select user mode Watcher: check the system status, I/O status, robot pose, and alarms Operator: Operate a robot based on the existing scripts without programming Programmer: Program, Teach Manager: Set parameters Please select user mode based on site requirements
9	Emergency stop switch Press and hold it in an emergency, the drive power supply of robot motors will be powered off for emergency braking
10	You can browse user guide and application case on welcome page

1.2 Settings

Before teaching or running robot programs, a series of settings are required, including motion parameter setting, language selecting, user mode selecting and process setting.

1.2.1 Setting Motion Parameter

Issue V1.0 (2020-06-03)	User Guide	Copyright © Yuejiang Technology Co., Ltd
	•	

You can set the velocity, acceleration or other parameters in different coordinate systems when jogging a robot or running robot programs. After setting the parameters, please click **Save**. Click

Config>RobotParams to enter RobotParams interface.

• Teach Joint Parameter: Set the maximum velocity and acceleration in the Joint coordinate system when jogging a robot. The jogging parameters of a 6-axis robot in the Joint coordinate system are as shown in Figure 1.2.

Teach Joint						
Teach Coordinate				\frown		
PlayBack Coordinate	Teach Coordinate Parameter					
PlayBack Arch						
PlayBack Joint	Velocity(mm/s) X	48.00	Accleration(mm/s2) X	201.00		
	Velocity(mm/s) Y	50.00	Accleration(mm/s2) Y	200.00 *		
	Velocity(mm/s) Z	50.00	Accleration(mm/s2) Z	200.00 *		
	Velocity(mm/s) Rx	50.00	Accleration(mm/s2) Rx	200.00 *		
	Velocity(mm/s) Ry	1.00 ×	Accleration(mm/s2) Ry	36.00 *		
	Velocity(mm/s) Rz	1.00	Accleration(mm/s2) Rz	44.00 *		

Figure 1.2 Jogging parameters in the Joint coordinate system

If the robot is a SCARA type, the related parameters of J5 and J6 are invalid.

• Set the maximum velocity and acceleration in the Cartesian coordinate system when jogging a robot. The jogging parameters of a 6-axis robot in the Cartesian coordinate system are as shown in Figure 1.3.

Teach Joint Teach Coordinate	Teach Coordinate Parameter	(Default) Save
PlayBack Joint	Velocity(mm/s) X 48.00	Accleration(mm/s2) X 201.00
	Velocity(nm/s) Y 50.00	Accleration(mm/s2) ¥ 200.00
	Velocity(mm/s) Z 50.00	Accleration(mm/s2) Z
	Velocity(mm/s) Rx 50.00	Accleration(mm/s2) Rx 200.00
	Velocity(mm/s) Ry	Accleration(mm/s2) Ry 36.00
	Velocity(mm/s) Rz	Accleration(mm/s2) Rz

Figure 1.3 Jogging parameters in the Cartesian coordinate system

DOBOT

If the robot is a SCARA type, **Rx** indicates the R-axis. The related parameters of **Ry** and **Rz** are invalid.

• Playback Joint Parameter: Set the maximum velocity, acceleration, and jerk in the Joint coordinate system when running robot programs. The playback parameters of a 6-axis robot in the Joint coordinate system are as shown in Figure 1.4.

Hone 🖸 RobotSetting 🖸 VirtualEobot 🖸	RobotParans 🔀							
Teach Jeint Teach Cordinate Joint Teach Cordinate Joint Teachad Cordinate Teachad Joint Teachad Joint	PlayBack Arc	h Parameter (U	Init: mm)					(Default) Save
	🗹 Enabla	No. 0	StartHeight	5.00	EndNeight	54.00	- 	101.00
	🗹 Enable	Ho. 1	SturtKeight	8.00 ÷	Indici ght	97.00	°	6.00
	🗹 Enable	Ho. 2	StartHeight	6.00	EndHeight	24.00	zLisit	92.00
	Znable	Ho. 3	StartHeight	7.00 ÷	Indfai ght	97.00	n v zLisit	17.00
	🗹 Enabla	Ho. 4	StartHeight	7:00	EndHeight	56.00	°z⊥isit	81:00
	🗹 Enable	¥0.5	SturtHeight	7.00 ÷	EndHeight	31.00	r zLimit	49.00 ÷
	🗹 Enable	Ho. 6	StartHeight	7.00	EndHeight	52.00	°_ zLimit	14.00
	🗹 Enable	Ho. 7	SturtKeight	7.00 ÷	EndHeight	79.00	÷ zLimit	63.00 ÷
	🛩 Enable	No.8	StartHeight	7.00	EndHeight	96.00	rlisit	95.00
	🛩 Enable	Но. 9	SturtKeight	7.00	EndHeight	85.00	rLisit	21.00

Issue V1 0 (2020-06-03)	User Guide	Convright @ Vueijang Technology Co. I td
Issue v 1.0 (2020-00-03)	User Guide	Copyright @ ruejiang rechnology Co., Liu

If the robot is a SCARA type, the related parameters of J5 and J6 are invalid.

• Playback Coordinate Parameter: Set the maximum velocity, acceleration and jerk in the Cartesian coordinate system when running robot programs. The playback parameters of a 6-axis robot in the Cartesian coordinate system are as shown in Figure 1.5.

RobotSetting 🖸 VirtualRobot 🛛	RobotParans 🗵			
Truch Joint Truch Corritants Truch Corritants Truchash Kenh Ringbash Kenh Fringbash Joint	PlayBack Coordinate Parameter			(Default) (Save)
	Valority(mm/s) XYZ	1000.00	Valocity(sm/s) BxRyHz	997.00 *
	Acoleration(nm/s2) XYZ	80000.00	Accleration(mm/s2) BzRyBz	50000.00 *
	Jark(na/s3) XYZ	80000.00	Jark(nn/x3) BrRyBr	50000.00

Figure 1.5 Playback parameters in the Cartesian coordinate system

If the robot is a SCARA type, **RxRyRz** indicates the R-axis.

• Playback Arch Parameter: If the motion mode is **Jump** when running robot programs, you need to set **StartHeight**, **EndHeight**, and **zLimit**.

You can set 10 sets of Jump parameters. Please set and select any set of parameters for calling Jump command during programming, as shown in Figure 1.6.

Home 🖾 RobotSetting 🖾 VirtualRobot 🕻	🛛 Robotfarans 🗵							
Teach Joint Teach Cordinate Tagh Cordinate Taghad Cordinate Trightad teach Trightad Joint	PlayBack Arc	h Parameter (L	Init: mm)					(Default) Save
	M Inshle	Ho. 0	StartNeight	5.00 ^A	EndMeight	54.00 [^]	zLiwit	101.00
	M Enable	Ho. 1	SturtMeight	8.00 ÷	EndMeight	97.00	zLinit	6.00 ÷
	🗹 Enable	¥s.2	StartHeight	6.00 ^A	EndHeight	24.00 ^(h) _{\V}	zLinit	92.00 ÷
	M Enable	¥s. 3	StartHeight	7.00 [^]	EndNeight	97.00	zLiwit	17.00
	M Eneble	Ho. 4	StartHeight	7.00 ^A	EndMeight	56.00 *	zLiwit	81.00 ÷
	M Enable	¥s.5	StartHeight	7.00 *	EndHeight	31.00	zLinit	49.00 ÷
	M Enable	Ho. 6	StartHeight	7.00	EndHeight	52.00 ⁺	zLiwit	14.00 ÷
	M Enable	Ho. 7	StartHeight	7.00	EndHeight	79.00	zLinit	63. 00 ÷
	M Enable	Ho.8	SturtHeight	7.00	EndHeight	96.00 ^a	zLinit	95.00 ÷
	M Enable	Ho. 9	StartHeight	7.00 ^(*)	EndHeight	85.00	zLiwit	21.00

Figure 1.6 Jump parameters

1.2.2 Setting User Coordinate System

When the position of workpiece is changed or a robot program needs to be reused in multiple processing systems of the same type, you can create coordinate systems on the workpiece to simplify programming. There are totally 10 groups of User coordinate systems, of which the first one is defined as the Base coordinate system by default and cannot be changed. And the others can be customized by users.

When creating a User coordinate system, please make sure that the reference coordinate system is the Base coordinate system. Namely, the User coordinate system icon should be User: 0 when creating a User coordinate system.

1.2.2.1 Setting User Coordinate System of SCARA Robot

User coordinate system of a SCARA robot is created by two-point calibration method: Move the robot to two points A(x1, y1, z1) and B(x2, y2, z2). Point A is defined as the origin and the line from point A to point B is defined as the positive direction of X-axis. And then the Y-axis and Z-axis can be defined based on the right-handed rule, as shown in Figure 1.7.

Figure 1.7 Two-point calibration

Take the establishment of User 1 coordinate system as an example.

Prerequisites

- The robot has been powered on.
- The DobotSCStudio has been in the manual mode.

Procedure

Step 1 Click Sconfig>GlobalCoordinate>Coordinate User.

The Coordinate User page is displayed, as shown in Figure 1.8.

Coordinate User	Coordinate User								
	x	¥.	Z	Rx					
Coordinate Teol	0 400.0000	0.0000	0.0000	0.0000					
						A STATE	CALIFORNIA CONTRACTOR OF CONTO		
							Anna I		
								4	
							the state	3	
						1235	1	-Y	
						UserO	the state	o pr ×	
					4.444				
					4 Axis First Peint				
					4 Aris First Print	410,0000	* v.	8 0000	
					4 Aris First Point X:	400.0000	‡)Y:	0.0000	
					4 Anis First Point X: Z:	400.0000	1 Y: 1 R:	0.0000	
					4 Anto First Peint X: Z:	400.0000	‡]Y: *]R:	0.0000	
					4 data First Print X: Z: Out First Print	400.0000	‡]Y: ‡]R:	0.0000	
					4 Ania Trist Foist X: Z: Get First Poist - Second Poist	400.0000 0.0000	*) Y:	0.0000	
					4 Anter First Frist X: Det First Frist Secol Frist X:	400.0000 0.0000	*) Y:	0.0000 0.0000 0.0000	
					4 dats First Faint X: C: Out first Paint Second Point X:	400.0000 0.0000 400.0000	: Y: ; R: ; Y:	0.000 0.000 0.000	
					4 data First Triat X: Z: Out First Point Second Point X: Z:	400.0000 0.0000 400.0000 0.0000	 Y: R: Y: R: 	0.000 0.000 0.000 0.000	
					4 data First biat X: 2: See Tree biat X: Z: 2:	400.0000 0.0000 400.0000 0.0000	1 Y: 2 R: 2 Y: 2 R:	0.0000 0.0000 0.0000 0.0000	
					4 datas 	400.0000 0.0000 400.0000 0.0000	2) Y: 2) R: 2) Y: 2) R:	0.000 0.000 0.000 0.000	

Figure 1.8 User coordinate system page

Step 2 Enable the motor and jog the robot to a point, then click Get First Point on the First

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co.
--

Point section to obtain the coordinates of the first point.

- Step 3 Enable the motor and jog the robot to another point, then click Get Second Point on the Second Point section to obtain the coordinates of the second point.
- Step 4 Click Add to generate the User 1 coordinate system.
- Step 5 Select User: 1 on Jog interface.

You can use the User 1 coordinate system for teaching and programming.

1.2.2.2 Setting User Coordinate System of 6-axis Robot

User coordinate system of a 6-axis robot is created by three-point calibration method: Move the robot to three points A(x1, y1, z1), B(x2, y2, z2), and C(x3, y3, z3). Point A is defined as the origin and the line from point A to Point B is defined as the positive direction of X-axis. The line that point C is perpendicular to X-axis is defined as the position direction of Y-axis. And then the Z-axis can be defined based on the right-handed rule, as shown in Figure 1.9.

Figure 1.9 Three-point calibration

Take the establishment of User 1 coordinate system as an example.

Prerequisites

- The robot has been powered on.
- The DobotSCStudio has been in the manual mode.

Procedure

Step 1 Click Sconfig>GlobalCoordinate>Coordinate User6Axis.

The Coordinate User page is displayed, as shown in Figure 1.10.

)
)

User Guide

Figure 1.10 User coordinate system page

Rx, **Ry**, **Rz** are the orientation data, which are designated by rotating the tool center point (TCP) around the X, Y, Z axes under the selected User coordinate system.

- Step 2 Enable the motor and jog the robot to the first point, then click Get First Point on the P1 tab to obtain the coordinates of the first point.
- Step 3 Enable the motor and jog the robot to the second point, then click Get Second Point on the P2 tab to obtain the coordinates of the second point.
- Step 4 Enable the motor and jog the robot to the third point, then click Get Third Point on the P3 tab to obtain the coordinates of the third point.
- Step 5 Click Add and Saveto generate the User 1 coordinate system.
- Step 6 Select User: 1 on Jog interface.

You can use the User 1 coordinate system for teaching and programming.

1.2.3 Setting Tool Coordinate System

When an end effector such as welding gun, gripper is mounted on the robot, the Tool coordinate system is required for programming and operating a robot. For example, you can use multiple grippers to carry multiple workpieces simultaneously to improve the efficiency by setting each gripper to a Tool coordinate system.

There are totally 10 groups of Tool coordinate systems. Tool 0 coordinate system is the predefined Tool coordinate system which is located at the robot flange and cannot be changed.

Issue V1.0 (2020-06-03) User Guide	Copyright © Yuejiang Technology Co., Ltd
------------------------------------	--

When creating a Tool coordinate system, please make sure that the reference coordinate system is the predefined Tool coordinate system. Namely, the Tool coordinate system

icon should be Tool: 0 when creating a Tool coordinate system.

1.2.3.1 Setting Tool Coordinate System of SCARA Robot

Tool coordinate system of SCARA robot is created by two-point calibration method: After an end effector is mounted, please adjust the direction of this end effector to make the TCP (Tool Center Point) align with the same point (reference point) in two different directions, for obtaining the position offset to generate a Tool coordinate system, as shown in Figure 1.11.

Figure 1.11 Two-point calibration method

Take the establishment of Tool 1 coordinate system as an example.

Prerequisites

- The robot has been powered on.
- The DobotSCStudio has been in the manual mode.

Procedure

Step 1 Mount an end effector on the robot. The detailed instructions are not described in this topic.

Step 2 Click Sconfig>GlobalCoordinate>Coordinate Tool.

The Coordinate Tool page is displayed, as shown in Figure 1.12.

Issue V1.0 (2020-06-03)

User Guide

Image: Constraint of the second sec	nate User Coordinate Too	1			-			
Image: Constraint of the second of	x	Y	z	Rx				
1 0.000 0.000 0.000 6.010 0.000 0.000 0.000 6.011 0.000 0.000 0.000 6.012 0.000 0.000 0.000 6.015 0.000 0.000 0.000 6.010 0.000 0.000 0.000 6.010 0.000 0.000 0.000 6.000 0.000 0.000 0.000 7: 0.000 0.000 0.000	nate Trol 0 0.0000			0.0000				
	1 0.0000	0.0000	0.0000	0.0000				
X: [a 000] [Y: [a 000] Z: [a 000] [X: [a 000]						10 4		Ş.
X: [0.000] Y: 0.000 Z: [0.000] R: 0.000 Ger First Fold X: [0.000] Y: [0.000 Z: [0.000] R: [0.000								
Z: [0.000] (fee Frint Polat) - Formal Folat X: [0.000] Y: [0.000 Z: [0.000] R: [0.000]					4Ax12 First Point			
1 1 1 1 1 6 6 7700 Triat 1					44xis 	0.0000	С Y:	0.0000
Z: a acco the second se					44xis Pirst Point X: Z:	0.0000	‡ Y: ‡ R:	0.0000
Z: 0.0000 - R: 0.0000					44x18 First Paint X: Z: Out First Paint Second Paint X:	0.0000	 ↓ Y: ↓ R: ↓ Y: 	0.0000
					Hirst Print X: Z: Gett First Point Second Print X:	0.0000	2) ¥: 2) R:	0.000

Figure 1.12 Tool coordinate page

- Step 3 Enable the motor and jog the robot to the reference point in the first direction, then click Get First Point on the First Point section to obtain the coordinates of the first point.
- Step 4 Enable the motor and jog the J4-axis, then jog other axes to the reference point in the second direction, and then click Get second Point on the second Point section to obtain the coordinates of the second point.
- Step 5 Click Add to generate the Tool 1 coordinate system.
- Step 6 Select Tool: 1 on Jog interface.

You can use the Tool 1 coordinate system for teaching and programming.

Result Validation

Make the TCP align with the fixed point and then jog the R-axis. If the robot can rotate around this point, it indicates that the Tool coordinate system is created successfully.

1.2.3.2 Setting Tool Coordinate System of 6-axis Robot

Tool coordinate system of a 6-axis robot is created by three-point calibration method (TCP +ZX): After the end effector is mounted, please adjust the direction of the end effector, to make TCP (Tool Center Point) align with the same point (reference point) in three different directions, for obtaining the position offset of the end effector, and then jog the robot to the other three points (**A**, **B**, **C**) for obtaining the angle offset, as shown in Figure 1.13.

Figure 1.13 Three points calibration method (TCP+ZX)

Take the establishment of Tool 1 coordinate system as an example.

Prerequisites

- The robot has been powered on.
- The DobotSCStudio has been in the manual mode.

Procedure

- Step 1 Mount an end effector on the robot. The detailed instructions are not described in this topic.
- Step 2 Click Sconfig>GlobalCoordinate>Coordinate Tool6Axis.

The Coordinate Tool page is displayed, as shown in Figure 1.14.

	X	Y	Z	Rx	Ry	Rz	
0	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
1	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
							Tool0 X
							× × ÷
							Y Tooll Z 2
							· • • • • • • • • • • • • • • • • • • •
							2 M
							N7
							N7
							W/
							Position Pose
							Position Pose P 1 P 2 P 3
							Position Pose P 1 P 2 P 3 X: 0.0000 T
							Position Pose P1 P2 P3 X: 0.0000 Rx: 0.0000
							Position Pose P 1 P 2 P 3 X: 0.0000 Rx: 0.0000 Y: 0.0000 Ry: 0.0000
							Position Pose P 1 P 2 P 3 X: 0.0000 Rx: 0.0000 Y: 0.0000 Ry: 0.0000 Z: 0.0000 Rz: 0.0000
							Position Pose P 1 P 2 P 3 X: 0.0000 Rx: 0.0000 Y: 0.0000 Ry: 0.0000 Z: 0.0000 Rz: 0.0000
							Position Fose P 1 P 2 P 3 X: 0.0000 Rx: 0.0000 Y: 0.0000 Ry: 0.0000 Z: 0.0000 Rz: 0.0000 Get First Point Get First Point Get First Point

Figure 1.14 Tool Coordinate page

Rx, **Ry**, **Rz** are the orientation data, which are designated by rotating the tool center point (TCP) around the X, Y, Z axes under the selected Tool coordinate system.

- Step 3 Enable the motor and jog the robot to the reference point in the first direction, then click Get First Point on the P1 tab of the Position page to obtain the coordinates of the first point.
- Step 4 Enable the motor and jog the robot to the reference point in the second direction, then click Get Second Point on the P2 tab of the Position page to obtain the coordinates of the second point.
- Step 5 Enable the motor and jog the robot to the reference point in the third direction, then click Get Third Point on the P3 tab of the Position page to obtain the coordinates of the third point.
- Step 6 Enable the motor and jog the robot to the reference point (point A) in the vertical direction, then click Get First Point on the P1 tab of the Pose page to obtain the fourth point.
- Step 7 Enable the motor and jog the Z-axis to a point (point B) along the positive direction, then click Get Second Point on the P2 tab of the Pose page to obtain the fifth point. This step defines the Z-axis.
- Step 8 Enable the motor and jog the X-axis to another point (point C), then click Get Third Point on the P3 tab of the Pose page to obtain the sixth point.

The three points (A,B,C) cannot lie in the same line.

```
Issue V1.0 (2020-06-03)User GuideCopyright © Yuejiang Technology Co., Ltd
```


This step defines the X-axis, and the Y-axis can be defined based on the right-handed rule.

- Step 9 Click Add to generate the Tool 1 coordinate system.
- Step 10 Click Select User: 1 on Jog interface.

You can use the Tool 1 coordinate system for teaching and programming.

1.2.4 Homing

After some parts (motors, reduction gear units) of the robot have been replaced or the robot has been hit, the origin of the robot will be changed. You need to reset the origin.

1.2.4.1 Homing of SCARA Robot

Prerequisites

The robot has been powered on.

Procedure

Step 1 Make the robot motor in the disabled status, and put the robot in the original position, as shown in Figure 1.15.

Figure 1.15 Original position

User Guide

There is a keyway on each joint. When moving the robot, the position where the keyways of the adjacent joints are aligned is called the original position of the corresponding joint, as shown in Figure 1.16.

Figure 1.16 Keyway position

Step 2 Rotate the mechanical stop clockwise on the ball screw to the limited position and then rotate it counter-clockwise about 180° or 360°. Figure 1.17 shows a mechanical stop.

Figure 1.17 Mechanical stop

Mechanical stop is used to prevent the robot from running out of the workspace, to avoid damage to the robot and operators.

Step 3 Make DobotSCStudio in the manual mode and enable the robot motor.

Step 4 Click Sconfig>Robotsetting>Home.

The home page is displayed, as shown in Figure 1.18.

Figure 1.18 Homing page

Step 5 Click

 $\mathbf{a}^{\mathbf{0}^{\mathbf{B}$

If the homing procedure is successful, **Home succeeded!** is displayed on the message window.

During the homing procedure, the robot will not move and will set the current position as the homing point. The homing position is shown in Figure 1.19.

Figure 1.19 Homing position

1.2.4.2 Homing of 6-axis Robot

Prerequisites

The robot has been powered on.

Procedure

Step 1 Make the robot motor in the disabled status and put the robot in the original position, as shown in Figure 1.20.

Figure 1.20 Original position

Discrete Restaura International Internationa

There is a keyway on each joint. When moving the robot, the position where the keyways of the adjacent joints are aligned is called the original position of the corresponding joint, as shown in Figure 1.21.

_

Figure 1.21 Keyway position

Step 2 Make DobotSCStudio in the manual mode and enable the robot motor.

Step 3 Click <a>Config>Robotsetting>Home.

The homing **page** is displayed, as shown in Figure 1.22.

Figure 1.22 Homing page

Issue V1.0 (2020-06-03)	User Guide	Copyright © Yuejiang Technology Co., Ltd

Step 4 Click on the homing page.

If the homing procedure is successful, **Home succeeded!** is displayed on the message window.

During the homing procedure, the robot will not move and will set the current position as the homing point. The homing position is shown in Figure 1.23.

Figure 1.23 Homing position

1.2.5 Calibration

Before being shipped out, the robot has been calibrated. You need to re-calibrate it if higher absolute precision is required in real applications.

For SCARA robot: Generally, the robot moves to the same point with different arm orientations, the J2 coordinates are axisymmetric. If not, absolute precision will be decreased. It is necessary to make the J2 coordinates axisymmetric by compensating the joint angle of J2 to improve absolute precision.

This topic takes a SCARA robot as an example to describe how to calibrate.

Prerequisites

The robot has been powered on.
 Issue V1.0 (2020-06-03)
 User Guide
 Copyright © Yuejiang Technology Co., Ltd

• The calibration kit has been mounted.

Procedure

- **Step 1** Switch DobotSCStudio to the manual mode.
- Step 2 Click Sconfig>Robotsetting>Calibrate.

The calibration page is displayed, as shown in Figure 1.24.

Home 🔝 Robert	farans 🔝 Globald	cordinate 🔝 BasicConfig 🖾 RebotSetting 🔼			
20%	Xone			Right	
0	Calibrate				
<u>.</u>	Point Load				
				Second step: Use right hand posture	
				to swing the robot to a fixed position.	
			First Point: 0.0000		Second Point:
			6. n		041 72
					Calibrate
					Calibrate

Figure 1.24 Calibration page

Step 3 Enable the robot motor.

The following steps must be performed in the enabled status.

- Step 4 Jog the robot with lefty hand orientation to a point on the calibration plate.
- Step 5 Click Get P1 on the Left section.

The value displayed on the Left section is J2 coordinate with lefty hand orientation.

Step 6 Jog the robot to lift a certain height and then jog to the same point in **Step 4** with righty hand orientation, as shown in Figure 1.25.

Figure 1.25 Calibration

Step 7 Click Get P2 on the Right section.

The value displayed on the **Right** section is J2 coordinate with righty hand orientation.

Step 8 Click Calibrate.

If the calibration is successful, The **Calibration Succeeded!** is displayed on the message window.

1.2.6 VirtualRobot

When user jogs or runs robot, the virtual simulation interface can be used to view the robot movement in real time.

1.2.7 **Log**

You can understand the historical operation of the robot by viewing the log. The log can be screened according to three types of logs: user operation, control error and servo error. Click **Reset** to clear the log.

>	Kne 🖸 Bebothuran 🔟 GlebalCorreinate 🖸 BasisConfig 🖸 BebotSetting 🚺 Aluran 🚺 Log 🔯	
1 Characterization of the second sec	2010-06-0 09 40 10 Ure Quertain 登宕문문考察(1) 2010-06-0 10 44 00 Ure Quertain 한국문문문문 (1011-10/project/Dyroject/B	Horr Operation ✓ Control Error ✓ Serve Error Message Num 17
GlobalCoordinate GlobalCoordinate BluginsInfo Comparison Compariso		
Coffline Co		
Ø Process MatrixPallet Æ TeachPallet Æ Tracking Ø VisionCalibration		
		Rent

Figure 1.26 Log

1.2.8 Language

Click **Config> BasicConfig> Language** enter the language switching interface, you can switch to Chinese or English.

1.2.9 Network Service

The robot system can be communicated with external equipment by the Ethernet interface which supports TCP, UDP and Modbus protocols. The default IP address is **192.16.5.1**. In real applications, if the TCP or UDP protocol is used, the robot system can be a client or a server based on site requirements; if the Modbus protocol is used, the robot system only can be the Modbus slave, and the external equipment is the master.

You can modify the IP address on the Sconfig>NetworkSetting page, as shown in Figure 1.27. The IP address of the robot system must be in the same network segment of the external equipment without conflict.

○ Auto IP Address ● Manual IP Addre	: ss:						
IP Address:	192]	168]	5	1	1
aubnot moalet	255]•	255]•	255]•	
subnet mask.	200) • 1	200] • 1	200]•	
default gateway:	192	•	168	•	5		1
							Save

Figure 1.27 IP address setting

Issue V1.0 (2020-06-03)	User Guide	Copyright © Yuejiang Technology Co., Ltd

Figure 1.28 and Figure 1.29 show the connections between the robot system and external equipment.

- If the robot system connects to the external equipment directly or with a switchboard, please select Manual IP Address and modify IP Address, subnet mask, default gateway, and then click Save.
- If the robot system connects to the external equipment with a router, please select **Auto IP Address** to assign IP address automatically, and then click **Save**.

Please DO NOT insert the network cable into the WAN interface when using a router for the connection.

Figure 1.28 Connect robot system to external equipment directly

Figure 1.29 Connect robot system to external equipment with router or switchboard

1.3 Monitor

1.3.1 **I/O Monitor**

Click **Config>IOMonitor**, Figure 1.30 shows the I/O monitor.

-IO Out					-IO In				
	01:0	02:0	03:0	04.0		01:0	02:0	03:0	04:0
	05:0	06:0	07:0	08:0		05:0	06:0	07:0	08:0
	09:0	10:0	11:0	12:0		09:0	10:0	11:0	12:0
	(12)			(12)		13:0	14:0	15:0	16:0
	13:0	14:0	15:0	16:0		17:0	18:0	19:0	20:0
-Relay Out-	01:0	02:0		03.0		21:0	22:0	23:0	24:0
	04:0	05:0					Rese	t	

Figure 1.30 I/O monitor page

There are two features: Output and monitor

- Output: Set the output status in the manual mode.
- Monitor: Check the status of the input and output. In the auto mode, the status of the output and input cannot be modified.

1.4 Remote Control

External equipment can send commands to a robot by different remote control modes, such as remote I/O mode and remote Modbus mode. The default mode is Teaching mode when the robot is shipped out. When you need to set the remote mode, please set it on DobotSCStudio with the robot motor in the disabled state.

- Robot rebooting is not required when switching the remote mode.
- The emergency stop switch on the hardware is always available no matter what mode the robot system is in.
- Please DO NOT switch the remote mode when the robot is running in the current remote mode. You need to exit the current mode and then switch to the other remote mode. Namely, please stop the robot running and then switch the mode.
- If the robot motor is in the enabled status, the remote control cannot be used. Otherwise, an alarm will be triggered. Please activate the remote control in the disabled status.

1.4.1 Remote I/O

When the remote mode is I/O mode, external equipment can control a robot in this mode. The specific I/O interface descriptions are shown in Table 1.2.

I/O interface	Description			
Input (For external control)				
DI 11	Clear alarm			
DI 12	Continue to run			
DI 13	Pause running in the I/O mode			
DI 14	Stop running and exit the I/O mode			
DI 15	Start to run in the I/O mode			
DI 16	Emergency stop and exit the I/O mode			
Output (For displaying the status)				
DO 13	Ready status			
DO 14	Pause status			
DO 15	Alarm status			
DO 16	Running status			

Table 1.2 Specific I/O interface descrip	tion
--	------

Issue V1.0 (2020-06-03)

All input signals are rising-edge triggered.

Prerequisites

- The project to be running in the remote mode has been prepared.
- The external equipment has been connected to the robot system by the I/O interface. The specific I/O interface description is shown in Table 1.2.
- The robot has been powered on.

NOTE

The details on how to connect external equipment and use it are not described in this topic.

Procedure

Step 1 Click Sconfig>Offline.

The remote control page is displayed, as shown in Figure 1.31.

			Modbus			Select Offline
	Low	-	▼	id: 0		11111
art:	Low	-				20200403 AP0059
		-	ClearAlarms:		-	Array
			Start:	Low	T	Array1
		~	Pause:	Low	-	DefaultPro
		*			-	ElapsedTime ElapsedTime3
				Low	-	Empty
		Ψ	ForceStop:	Low	-	Empty2
Out						My project
eady:	Low	Ŧ		Low	~	Network
		-			*	Pallet Pallet2
						Pallet3
	Low	~	Alarms:	Low	Ψ.	TCP3
	Low	Ŧ		Low	Ŧ	TCPServer

Figure 1.31 Remote control page

Step 2 Select IO on the Control Mode section and select the offline project on the Select Offline Project section.

The Save success, now remote control mode is IO page is displayed.

Right now, only the emergency stop button is available.

Step 3 Trigger the starting signal on the external equipment.

```
Issue V1.0 (2020-06-03)
```

User Guide

Copyright © Yuejiang Technology Co., Ltd

The robot will move as the selected offline project. If the stop signal is triggered, the remote I/O mode will be invalid.

1.4.2 Remote Modbus

When the remote mode is Modbus mode, external equipment can control a robot in this mode. For details about Modbus registers, please see 2.15.1Modbus Register Description. The specific Modbus register descriptions are shown in Table 1.3.

Register address (Take a PLC as an example)	Register system)	address	(Robot	Description
Coil register				
00001	0			Start running in the remote Modbus mode
00002	1			Pause running in the remote Modbus mode
00003	2			Continue to run
00004	3			Stop to run and exit the remote Modbus mode
00005	4			Emergency stop and exit the remote Modbus mode
00006	5			Clear alarm
Discrete input register				
10001	0			Auto-exit
10002	1			Ready status
10003	2			Pause status
10004	3			Running status
10005	4			Alarm status

Tahla 1 3	Specific Modbus	rogistor	description
Table 1.5	Specific Mousus	register	uescription

Prerequisites

- The project to be running in the remote mode has been prepared.
- The robot has been connected to the external equipment with the Ethernet interface. You can connect them directly or via a router, please select based on site requirements.
 - The IP address of the robot system must be in the same network segment of the external equipment without conflict. You can modify the IP address on the **Config> NetworkSetting** page; the default port is **502** and cannot be modified.
- The robot has been powered on.

```
Issue V1.0 (2020-06-03)
```

Copyright © Yuejiang Technology Co., Ltd

The details on how to connect external equipment and use it are not described in this topic.

Procedure

Step 1 Click >Config>Offline.

The remote control page is displayed, as shown in Figure 1.32.

			Modbus			Select Offline
Oln ClearAlarms:	Low	-	settings	id: 0		Name: _2
Start:		*	coils			20200403
			ClearAlarms:	Low	~	AP0059 Array
		~	Start:		~	Array1
	Low			Low	*	DefaultPro
		-			~	ElapsedTime3
				Low	-	Empty
	Low	~			*	Empty2
						MoveJ My project
	Low	~		Low	~	Network
	Low	~		Low	~	Pallet Pallet2
		*	Alarms:		*	Pallet3 TCP3
						TCPClient
	Low	~		Low	~	TCPServer

Figure 1.32 Remote control page

Step 2 Select Modbus on the Control Mode section and select the offline project on the Select Offline Project section.

The Save success, now remote control mode is Modbus page is displayed.

Right now, only the emergency stop button is available.

Step 3 Trigger the starting signal on the external equipment.

The robot will move as the selected offline project. If the stop signal is triggered, the remote Modbus mode will be invalid.

1.5 **Programming**

1.5.1 **Project Description**

The robot program is managed in project form, including teaching points list, global variables, and program files. Figure 1.33 shows the project structure.

Figure 1.33 Project structure

1.5.2 **Programming Interface Description**

When programming a robot, please switch DobotSCStudio to the manual mode. Figure 1.34 shows the programming panel and Table 1.4 lists its description.

Figure 1.34 Programming panel

No.	Description
1	 Project files TeachPoint: Teach points. For details, please see <i>1.5.3.2 Teaching points</i> Global: Define and initialize global variables or functions Src0~Src4: Multithreaded files. The number of

Table 1.4 Programming panel description

No.	Description
	threads is related to CPU that is set when creating a project. Up to 5 threads can be executed simultaneously
2	Common buttons. For details, please see Table 1.5
3	Programming area
4	Running button, for details, please see Table 1.6
5	Debug result

Table 1.5 lists the common button description.

Icon	Description
	Save the project
•	Cancel
►	Redo
	Copy the selected codes
×	Cut the selected codes
	Paste the selected codes
F*	Motion command libraries. For details, please see 2 Program Language
< >	Code comment
৽৻৾	Common operation instructions and process control instructions, for details, please see 2 Program Language

Table 1.5 Common button description

1.5.3 **Programming Description**

Take a SCARA robot as an example to describe how to program. Figure 1.35 shows the programming process.

Issue V1.0 (2020-06-03)	User Guide	Copyright © Yuejiang Technology Co., Ltd
	21	

Figure 1.35 Programming process

1.5.3.1 Creating Project

Prerequisites

- The robot has been powered on.
- DobotSCStudio has been in the manual mode.

Procedure

Step 1

The programming page is displayed, as shown in Figure 1.36.

Figure 1.36 Programming page

enter project creating page, enter the project name, you can also select Step 2 Click a template. Click OK.

Ø Di	alog				?	×
Cł	ioose a templat	e				
	Р	Р	Р	Р	Р	
	Empty	Array	DynamicTracking	ElapsedTime	MoveJ	
	Р	Р	Р	P	Р	
	Pallet	TCPClient	TCPServer	UDPClient	UDPServer	
Sta	andard project t	emplate				
nan	ne My projec	t			*.prj	
					ok car	ncel

Figure 1.37 Create a project

Step 3 Set the number of threads based on site requirements, as shown in Figure 1.38. Rightclick thread and click New thread file.

The maximum number of threads is 5.

Figure 1.38 Create a project

Step 4 (Optional) Import the existing taught positions list.

If you want to reuse a taught positions list from an existing project, please right-click **Point** and click **import points file**, as shown in Figure 1.39.

Figure 1.39 Import the existing teaching points list

1.5.3.2 **Teaching points**

Prerequisites

- The project has been created or imported
- DobotSCStudio has been in the manual mode

Procedure

After creating a project, please teach positions on the **TeachPoint** page for calling commands when programming a robot. If the existing taught positions list has been imported, this operation

Issue V1.0 (2020-06-03)User GuideCopyright © Yuejiang Technology Co., Ltd

can be skipped.

- **Step 1** Enable the robot motor.
- **Step 2** Click **Jog** buttons to move the robot to a point.
- Step 3 Double click Point enter point page and click to add a teaching point.

The teaching point information is displayed on the **TeachPoint** page, as shown in Figure 1.40.

Arm is the arm orientation. **Tool** is the Tool coordinate system and **User** is the User coordinate system.

	F	- 3*		€ ~⊖	★ ▼					
		No.	x	Y	Z	R	Arm	Tool	User	Load
1	F	P1	400.0000	0.0000	0.0000	0.0000	Right 📼	No.0 -	No.0 -	No.0 -

Figure 1.40 Teaching points list of SCARA robot

Table 1.6 Button description

Button	Description
Ð	Add a point
-0	Delete a point
A)	Cover a point. Select a teaching point, after jogging the robot to a point, click the icon to cover the selected teaching point
- ?	Run to a point, select a point, click the button to run the robot to this point
	Save teaching point

Issue V1.0 (2020-06-03)

Button	Description
	Previous page
▼	Next page

• You can select a taught position and double-click the parameters on the line to modify the relevant information, as shown in Figure 1.41.

No.	х	Y	z	R	Arm		Tool		Use	r	Loa
P1	400.0000	1.0000	120.0000	0.0000	Right	٣	No.0	٧	No.0	*	No.0
	400.0000	1.0000	120.0000	0.0000	Right	2	NO.0	-	NO.0		NO.U

Figure 1.41 Modify the teaching point information

• Also, you can select a taught position and click \checkmark to cover the current taught position.

Step 4 Add points by referring to Step 2 and Step 3.

Step 5 Click to save the teaching points.

If the robot is a 6-axis type, the teach point page is as shown in Figure 1.42. **R**, **D**, **N**, **Cfg** indicate the arm parameters.

F		* I		€ 🗠	Θ 1	• •	F										
	No.	х	Y	Z	Rx	Ry	Rz	F	t l	[)	1	N	Cfg	Tool	User	Load
1	P1	400.00	1.0000	120.00	0.0000	0.0000	0.0000	-1	~	-1	~	-1	Ŧ	0	No.0 🔻	No.0 🔻	No.0 🔻
2	P2	-8.4353	105.02	-136.0	164.77	0.0000	0.0000	-1	*	-1	Ŧ	-1	Ŧ	0	No.0 🔻	No.0 🔻	No.0 🔻

Figure 1.42 TeachPoint page

1.5.3.3 Writing a Program

Prerequisites

- The project has been created or imported.
- The points have been taught.

Procedure

In the robot system, we have encapsulated common commands for programming with Lua language. For details, please see 2 *Program Language*.

Supposing that the **P1** and **P2** points have been taught on the **TeachPoint** page. We call **Go** command on the Src0 Page, to make the robot move between point P1 and point P2 circularly, as shown in Figure 1.43.

condition to True.

- Step 2 Add the motion commands between do and end.
 - 1. Click $\mathbf{F}\mathbf{\dot{x}} > \mathbf{Move}$.

The motion commands list is displayed, as shown in Figure 1.44.

Fx ℃	E
	+ 10
	- MOVE
	СР
	Arch
	Speed
	LimZ
	SpeedS
	Accel
	AccelS
	Go
	MoveJ
	Move
	Arc3
	Jump
	Circle3
	GetPose
	GetAngle

Figure 1.44 Motion commands list

2. Select a command from the motion commands list and click it on the edit window of the Src0 page.

The parameter setting page of this command is displayed. Take the Go command as an example. You can set the point where the robot will move to in the Go mode.

3. Select P1 on the First Parameter section of the Go command setting page, and then click Insert. Namely, the robot moves to P1 point in the Go mode.

GoFirst Parameter point: P1 =	
Second Parameter	
	Insert Cancel

Figure 1.45 Call the Go command

If you want to set the motion speed, arm orientation, you can set them on the Second Parameter section, as shown in Figure 1.46.

```
Copyright © Yuejiang Technology Co., Ltd
Issue V1.0 (2020-06-03)
                                           User Guide
```


ARM =	Left 💌	✔ Speed=	50
🖌 Vser=	0 -	🖌 Accel=	20
✔ Tool=	0 -	Start=	0
🖌 CP =	0	End=	0
SYNC =	1	ZLimit=	0
		OK	Cance1

Figure 1.46 Set the optional parameters

- 4. Wrap and execute 2 again.
- 5. Select P2 on the First Parameter section of the Go command setting page, and then click Insert. Namely, the robot moves to P2 point in the Go mode.

NOTE

If you want to debug a robot program step by step, please set the breakpoint when writing the program. Click the right line to set, as shown in Figure 1.47.

Figure 1.47 Set breakpoint

Now, a simple program has been written.

1.5.3.4 **Debugging Program**

Step 3

Switch DobotSCStudio to the auto mode. Step 1

to enable the motor. Step 2 Click

Now, the programming page is as shown in Figure 1.48.

at the state of th	
Horispace If / Units and I	4.10
any project 2 do	- MOVE
🛃 point 🛛 7	
🔁 global 🛛 🗧	
	Accels
	do la contra de la
	+ Modbus
	+ PROCESS
	 Kelative Tropic (pp)
	+ notem
	• 595500
ALL - A	
2020-OH-OH 15 00:30 Wear Operation: controlModefAmared disable	
2020-00-01 15:00:34 User Operation: xroller as main thread	
2020-00-01 12:06:34 User Operation: autoManualLinger encode	
2020-00-01 15:00:35 User Operation: vortheat and Modelhanged disable 2020-00-01 15:14:28 User Operation: writest at and the	
2020-06-01 15:14 28 User Operation: spathward projectproject	
12020706731 in:14:36 User Uperation: workman2Dhaped exampl. 2020706731 Status and St	
2020-061-01 15:21:16 User Operation: autobased same	
2020-06-01 15:21:37 Usar Operation: autoMassalChanged wato	

Figure 1.48 Programming page

Table 1.7 lists the description of the program-running buttons which are shown in Figure 1.48

Table 1.7 Flogram-running button description	Table 1.7	Program-running button description
--	-----------	------------------------------------

Icon	Description
	Build program
-	Check if the code is correct
	Once-click run
	After clicking this button, b turns into III and the program starts running
	If you need to pause the running program, please click
	Start to run a program
	Click once: Start to debug a program, turns into
	Click twice: Start to run a program, turns into
	If you need to pause the running program, please click
	Stop the running program
۹	Step into

Issue V1.0 (2020-06-03)

Icon	Description
	This button is valid only if turns into
:0	Monitor The debugging process can be monitored in real time while debugging the program

• If you has been set a breakpoint, the program will be run to the previous line of the breakpoint and then be stopped. If the program need to be run again, please click

and then click

• If you want to run a program step by step, please click . After turns into

1.6 Enabling

• Enable the motor in the manual mode: Click $\overset{\frown}{=}$ in manual mode. When the icon

Enable the motor in the auto mode: Click ¹ in auto mode. When the icon ¹

turns into *into*, the robot arm be controlled by running the program.

1.7 Setting Global Velocity Rate

Please click and then click buttons to increase or decrease the global velocity ratio by **1%**, **5%** or **10%** on the operation panel, or drag the slider directly to set the global velocity, as shown in Figure 1.49.

Tips:According to current mode to set the speed ratio!	
	+1 +5 +10

When doing jogging or playback, the method calculating the velocity and acceleration for each axis (in Joint or Cartesian coordinate system) is shown as follows.

- Actual jogging velocity = the maximum jogging velocity * global velocity rate
- Actual jogging acceleration = the maximum jogging acceleration* global velocity rate
- Actual playback velocity = the maximum playback velocity * global velocity rate * the set velocity rate in the velocity function
- Actual playback acceleration = the maximum playback acceleration* global velocity rate * the set acceleration rate in the acceleration function
- Actual playback jerk = the maximum playback jerk * global velocity rate * the set acceleration rate in the jerk function

- The maximum velocity, acceleration, or jerk can be set on the **Settings** page. For details, please see *1.2.1 Setting Motion Parameter*.
- The rates (velocity rate, acceleration rate, or jerk rate) can be set in the related speed functions. For details, please see 2.9 *Motion Parameter Commands*.

1.8 Alarm Description

If teaching point is incorrect, for example, a robot moves to where a point is at a limited position or a singular point, an alarm will be triggered.

If an alarm is triggered when running a robot, the alarm icon

on the DobotSCStudio

turns into . You can check the alarm information on the Alarm page, as shown in Figure 1.50.

Please clear the alarm as follows:

- If a limitation alarm is triggered, please jog the limited joint axis towards the opposite direction in the manual mode to clear the alarm.
- If other alarms are triggered, please click in the manual mode on the alarm page to clear the alarm. If the alarm cannot be cleared, please reboot the robot.

Figure 1.50 Alarm page

2. Program Language

SC series controller encapsulates the robot dedicated API commands for programming with Lua language. This section describes commonly used commands for reference.

2.1 Arithmetic Operators

Command	Description
+	Addition
-	Subtraction
*	Multiplication
/	Floating point division
//	Floor division
%	Remainder
٨	Exponentiation
&	And operator
	OR operator
~	XOR operator
«	Left shift operator
»»	Right shift operator

Table 2.1 Arithmetic operator

2.2 Relational Operator

Table 2.2 Relational Operator

Command	Description
==	Equal
~=	Not equal
<=	Equal or less than
>=	Equal or greater than
<	Less than
>	Greater than

2.3 Logical Operators

Table 2.3 Logical operator

Command	Description
or	Logical OR operator
not	Logical NOT operator
and	Logical AND operator

2.4 General Keywords

Command	Description
break	Break out of a loop
local	Define a local variable, which is available in the current script
nil	Null
return	Return a value
enter	Line feed

2.5 General Symbol

Table 2.5General symbol

Command	Description
#	Get the length of the array table

2.6 Processing Control Commands

Table 2.6	Processing co	ntrol command
-----------	---------------	---------------

Command	Description
ifthenelseelseifend	Conditional instruction (if)
whiledoend	Loop instruction (while)
fordoend	Loop instruction (for)
repeat until()	Loop instruction (repeat)

2.7 Global Variable

Issue V1.0 (2020-06-03)	User Guide	Copyright © Yuejiang Technology Co., Ltd
-------------------------	------------	--

The robot global variables can be defined in the **global.lua** file, including global functions, global points, and global variables.

• Global function:

function exam()

print("This is an example")

end

- Global point:
 - SCARA robot: Define a Cartesian coordinate point, of which the arm orientation is right handy orientation, the User and Tool coordinate systems are both default coordinate systems.

```
P = \{armOrientation = "right", coordinate = \{400,0,0,0\}, tool = 0, user = 0\}
```

• Six-axis robot: Define a joint coordinate point, of which **R** sets to **1**, **D** sets to **-1**, **N** sets to **0**, **Cfg** sets to **1**, the User and Tool coordinate systems are both default coordinate systems.

 $P = \{armOrientation = \{1, 1, -1, 1\}, joint = \{20, 10, 22, 2.14, 0.87, 3.85\}, tool = 0, user = 0\}$

• Global variable

flag = 0

2.8 Motion Commands

Command	Description
Go	Move from the current position to a target position in a point-to-point mode under the Cartesian coordinate system
MoveJ	Move from the current position to a target position in a point-to-point motion under the Joint coordinate system
Move	Move from the current position to a target position in a straight line under the Cartesian coordinate system
Arc3	Move from the current position to a target position in an arc interpolated mode under the Cartesian coordinate system
Jump	 If the robot is a SCARA type, the robot moves from the current position to a target position in the Go mode. The trajectory looks like a door If the robot is a six-robot type, the robot moves from the current position to a target position in the Move mode. The trajectory looks like a door

Table 2.7 Motion command

Command	Description
	•
Circle3	Move from the current position to a target position in a circular interpolated mode under the Cartesian coordinate system
RP	Set the X, Y, Z axes offset under the Cartesian coordinate system to return a new Cartesian coordinate point
RJ	Set the joint offset under the Joint coordinate system to return a new joint coordinate point
MoveR	Move from the current position to the offset position in a straight line under the Cartesian coordinate system
GoR	Move from the current position to the offset position in a point-to-point mode under the Cartesian coordinate system
MoveJR	Move from the current position to the offset position in a point-to-point motion under the Joint coordinate system

Optional parameters for each motion command can be set individually

Table 2.8 Go command

Function	Go(P,"ARM=Left User=1 Tool=2 CP=1 Speed=50 Accel=20 SYNC=1")
Description	Move from the current position to a target position in a point-to-point mode under the Cartesian coordinate system

Parameter	Required parameter: P: Indicate target point, which is user-defined or obtained from the	
	TeachPoint page. Only Cartesian coordinate points are supported	
	Optional parameter:	
	• ARM: Arm orientation: If the robot is a SCARA type, please set to left or right. If the robot	
	is a 6-axis type, this parameter is invalid	
	• User: Indicate User coordinate system. Value range: 0 - 9	
	• Tool: Indicate Tool coordinate system. Value range: 0-9	
	• CP: Whether to set continuous path function. Value range: 0- 100	
	• Speed: Velocity rate. Value range: 1 - 100	
	• Accel: Acceleration rate. Value range: 1 -100	
	• SYNC: Synchronization flag. Value range: 0 or 1. If SYNC is 0 , it indicates asynchronous execution, this command has a return immediately after calling it, regardless of the command process. If SYNC is 1 , it indicates synchronous execution. After calling this	
	command, it will not return until it is executed completely	
Example	1. The robot moves to point P1 as the default setting	
	Go(P1)	
	2. The SCARA robot moves to point P1 as the righty hand orientation with 50% velocity rate and 50% acceleration rate	
	Go(P1," ARM=Right Speed=50 Accel=50")	
	3. Define a Cartesian coordinate point P1 and the SCARA robot moves to this point as the	
	righty hand orientation with 50% velocity rate and 50% acceleration rate	
	local P1 = {armOrientation = "right",coordinate={20,15,52,0}}	
	Go(P1)	

Table 2.9 MoveJ command

Function	MoveJ(P," CP=1 Speed=50 Accel=20 SYNC=1")	
Description	Move from the current position to a target position in a point-to-point motion under the Joint coordinate system	
Parameter	 Required parameter: P: Indicate the joint angle of the target point, which cannot be obtained from the TeachPoint page. You need to define the joint coordinate point before calling this command Optional parameter: CP: Whether to set continuous path function. Value range: 0 - 100 Speed: Velocity rate. Value range: 1 - 100 Accel: Acceleration rate. Value range: 1 - 100 SYNC: Synchronization flag. Value range: 0 or 1. If SYNC is 0, it indicates asynchronous execution, this command has a return immediately after calling it, regardless of the command process. If SYNC is 1, it indicates synchronous execution. After calling this 	

	command, it will not return until it is executed completely	
Example	local P = { $joint=\{0,-0.0674194,0,0\}$ }	
	MoveJ(P)	
	Define a joint coordinate point P and the SCARA robot moves to this point as the default setting	

Table 2.10 Move command

Function	Move(P,"ARM=Left User=1 Tool=2 CP=1 SpeedS=50 AccelS=20 SYNC=1")	
Description	Move from the current position to a target position in a straight line under the Cartesian coordinate system	
Parameter	 Required parameter: P: Indicate the target point, which is user-defined or obtained from the TeachPoint page. Only Cartesian coordinate points are supported Optional parameter: ARM: Arm orientation: If the robot is a SCARA type, please set to left or right. If the robot is a 6-axis type, this parameter is invalid User: Indicate User coordinate system. Value range: 0 - 9 Tool: Indicate Tool coordinate system. Value range: 0 - 9 CP: Whether to set continuous path function. Value range: 0 - 100 SpeedS: Velocity rate. Value range: 1 - 100 AccelS: Acceleration rate. Value range: 0 or 1. If SYNC is 0, it indicates asynchronous execution, this command has a return immediately after calling it, regardless of the command process. If SYNC is 1, it indicates synchronous execution. After calling this command, it will not return until it is executed completely 	
Example	1. The robot moves to point P1 as the default setting	
	 The SCARA robot moves to point P1 as the lefty hand orientation with 50% velocity rate and 50% acceleration rate Move(P1," ARM=Left SpeedS=50 AccelS=20") 	
	 Define a Cartesian coordinate point P1 and the SCARA robot moves to this point as the default setting 	
	local P1 = $\{coordinate = \{20, 15, 52, 0\}\}$	
	Move(P1)	

Table 2.11	Arc3 command

Function	Arc3(P1,P2, "ARM=Le	ft User=1 Tool=2 CP=1 \$	SpeedS=50 AccelS=20 <i>SYNC</i> =1")
Issue V1.) (2020-06-03)	User Guide	Copyright © Yuejiang Technology Co., Ltd

Description	Move from the current position to a target position in an arc interpolated mode under the Cartesian coordinate system	
	This command needs to combine with other motion commands, to obtain the starting point of an arc trajectory	
Parameter	Required parameter:	
	• P1: Middle point, which is user-defined or obtained from the TeachPoint page. Only Cartesian coordinate points are supported	
	• P2: End point, which is user-defined or obtained from the TeachPoint page. Only Cartesian coordinate points are supported	
	Optional parameter:	
	• Arm orientation: If the robot is a SCARA type, please set to left or right. If the robot is a 6-axis type, this parameter is invalid	
	• User: Indicate User coordinate system. Value range: 0 - 9	
	• Tool: Indicate Tool coordinate system. Value range: 0 - 9	
	• CP: Whether to set continuous path function. Value range: 0 - 100	
	• SpeedS: Velocity rate. Value range: 1 - 100	
	• AccelS: Acceleration rate. Value range: 1 – 100	
	• SYNC: Synchronization flag. Value range: 0 or 1. If SYNC is 0 , it indicates asynchronous execution, this command has a return immediately after calling it, regardless of the	
	command process. If SYNC is 1 , it indicates synchronous execution. After calling this command, it will not return until it is executed completely	
Example	While true do	
	Go(P1)	
	Arc3(P2,P3)	
	end	
	The robot cycles from point P1 to point P3 in the arc interpolated mode	

Table 2.12 Jump command

Function	Jump(P,"ARM= <i>Left</i> User=1 Tool=2 Speed=50 Accel=20 Arch=1 <i>SYNC</i> =1") Jump(P,"ARM= <i>Left</i> User=1 Tool=2 Speed=50 Accel=20 Start=10 ZLimit=80 End=50 <i>SYNC</i> =1")
Description	• If the robot is a SCARA type, the robot moves from the current position to a target position in the Go mode. The trajectory looks like a door
	• If the robot is a six-robot type, the robot moves from the current position to a target position in the Move mode. The trajectory looks like a door

Parameter	Required parameter: P: Indicate the target point, which is user-defined or obtained from the	
	TeachPoint page. Only Cartesian coordinate points are supported. Also, the target point cannot	
	be higher than ZLimit , to avoid an alarm about JUMP parameter error	
	Optional parameter:	
	• ARM: Arm orientation: If the robot is a SCARA type, please set to left or right. If the robot	
	is a 6-axis type, this parameter is invalid	
	• User: Indicate User coordinate system. Value range: 0 - 9	
	• Tool: Indicate Tool coordinate system. Value range: 0 - 9	
	• Speed: Velocity rate. Value range: 1 - 100	
	• Accel: Acceleration rate. Value range: 1 - 100	
	• Arch: Arch index. Value range: 0 - 9	
	• Start: Lifting height	
	ZLimit: Maximum lifting height	
	End: Dropping height	
	• SYNC: Synchronization flag. Value range: 0 or 1. If SYNC is 0 , it indicates asynchronous	
	execution, this command has a return immediately after calling it, regardless of the	
	command process. If SYNC is 1, it indicates synchronous execution. After calling this	
	command, it will not return until it is executed completely	
Example	Jump(P1)	
	The robot moves to point P1 in the Jump mode	

The lifting height and dropping height cannot be higher than ZLimit, to avoid an alarm on JUMP parameter error.

Table 2.13 Circle3 command

Function	Circle3(P1,P2,Count, "ARM=Left User=1 Tool=2 CP=1SpeedS=50 AccelS=20")
Description	Move from the current position to a target position in a circular interpolated mode under the Cartesian coordinate system This command needs to combine with other motion commands, to obtain the starting point of an arc trajectory
Parameter	 Required parameter P1: Middle point, which is user-defined or obtained from the TeachPoint page. Only Cartesian coordinate points are supported P2: End point, which is user-defined or obtained from the TeachPoint page. Only Cartesian coordinate points are supported

Issue V1.0 (2020-06-03)	User Guide	Copyright © Yuejiang Technology Co., Ltd

	• Count: Number of circles. Value range: 1 - 999	
	Optional parameter:	
	• ARM: Arm orientation: If the robot is a SCARA type, please set to left or right. If the robot	
	is a 6-axis type, this parameter is invalid	
	• User: Indicate User coordinate system. Value range: 0 - 9	
	• Tool: Indicate Tool coordinate system. Value range: 0 - 9	
	• CP: Whether to set continuous path function. Value range: 0 - 100	
	• SpeedS: Velocity rate. Value range: 1 - 100	
	• AccelS: Acceleration rate. Value range: 1 - 100	
	• SYNC: Synchronization flag. Value range: 0 or 1. If SYNC is 0 , it indicates asynchronous	
	execution, this command has a return immediately after calling it, regardless of the	
	command process. If SYNC is 1, it indicates synchronous execution. After calling this	
	command, it will not return until it is executed completely	
Example	Go(P1)	
	Circle3(P2,P3,1)	
	Robot cycles from point P1 to point P3 in the circular interpolated mode	

Table 2.14 RP command

Function	RP(P1, {OffsetX, OffsetY, OffsetZ})
Description	Set the X, Y, Z axes offset under the Cartesian coordinate system to return a new Cartesian coordinate point The robot can move to this point in all motion commands except MoveJ
Parameter	 P1: Indicate the current Cartesian coordinate point, which is user-defined or obtained from the TeachPoint page. Only Cartesian coordinate points are supported OffsetX, OffsetY, OffsetZ: X, Y, Z axes offset in the Cartesian coordinate system Unit: mm
Return	Cartesian coordinate point
Example	P2=RP(P1, {50,10,32}) Move(P2) or Move(RP(P1, {50,10,32}))

Table 2.15 RJ command

Function	RJ(P1, {Offset1, Offset2, Offset3, Offset4, Offset5, Offset6})
Description	Set the joint offset in the Joint coordinate system to return a new joint coordinate point
	The robot can move to this point only in MoveJ command

Parameter	 P1: Indicate the current joint coordinate point, which cannot be obtained from the TeachPoint page. You need to define the joint coordinate point before calling this command Offset1~Offset6: J1 - J6 axes offset. If the robot is a SCARA type, Offset5 and Offset 6 are invalid Unit: °
	onit.
Return	Joint coordinate point
Example	Take a SCARA robot as an example:
	local P1 = $\{joint=\{0,-0.0674194,0,0\}\}$
	P2=RJ(P1, {60,50,32,30})
	MoveJ(P2) or MoveJ(RJ(P1, {60,50,32,30}))

Table 2.16 GoR command

Function	GoR({OffsetX, OffsetY, OffsetZ},"ARM= <i>Left</i> User=1 Tool=2 CP=1 Speed=50 Accel=20 <i>SYNC</i> =1 ")
Description	Move from the current position to the offset position in a point-to-point mode under the Cartesian coordinate system
Parameter	 Required parameter: OffsetX, OffsetY, OffsetZ: X, Y, Z axes offset in the Cartesian coordinate system Unit: mm Optional parameter: ARM: Arm orientation: If the robot is a SCARA type, please set to left or right. If the robot is a 6-axis type, this parameter is invalid User: Indicate User coordinate system. Value range: 0 - 9 Tool: Indicate Tool coordinate system. Value range: 0-9 CP: Whether to set continuous path function. Value range: 0-100 Speed: Velocity rate. Value range: 1 - 100 Accel: Acceleration rate. Value range: 0 or 1. If SYNC is 0, it indicates asynchronous execution, this command has a return immediately after calling it, regardless of the command process. If SYNC is 1, it indicates synchronous execution. After calling this command, it will not return until it is executed completely
Example	Go(P1) GoR({10,10,10},"Accel=100 Speed=100 CP=100")

Function	MoveJR({Offset1, Offset2, Offset3, Offset4, Offset5, Offset6}," CP=1 Speed=50 Accel=20 SYNC=1")
Description	Move from the current position to the offset position in a point-to-point motion under the Joint coordinate system
Parameter	 Required parameter: Offset1 - Offset6: J1 - J6 axes offset. If the robot is a SCARA type, Offset5 and Offset 6 are invalid Unit: ° Optional parameter: CP: Whether to set continuous path function. Value range: 0 - 100 Speed: Velocity rate. Value range: 1 - 100 Accel: Acceleration rate. Value range: 1 - 100 SYNC: Synchronization flag. Value range: 0 or 1. If SYNC is 0, it indicates asynchronous execution, this command has a return immediately after calling it, regardless of the command process. If SYNC is 1, it indicates synchronous execution. After calling this command, it will not return until it is executed completely
Example	Go(P1)
	MoveJR({20,20,10,0},"SYNC=1")

Table 2.17 MoveJR command

Table 2.18 MoveR command

Function	MoveR({OffsetX, OffsetY, OffsetZ},"ARM=Left User=1 Tool=2 CP=1 SpeedS=50 AccelS=20 SYNC=1")
Description	Move from the current position to the offset position in a straight line under the Cartesian coordinate system
Parameter	 Required parameter: OffsetX, OffsetY, OffsetZ: X, Y, Z axes offset in the Cartesian coordinate system Unit: mm Optional parameter: ARM: Arm orientation: If the robot is a SCARA type, please set to left or right. If the robot is a 6-axis type, this parameter is invalid User: Indicate User coordinate system. Value range: 0 - 9 Tool: Indicate Tool coordinate system. Value range: 0 - 9 CP: Whether to set continuous path function. Value range: 0 - 100 SpeedS: Velocity rate. Value range: 1 - 100 AccelS: Acceleration rate. Value range: 1 - 100 SYNC: Synchronization flag. Value range: 0 or 1. If SYNC is 0, it indicates asynchronous
Issue V1.	0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

	execution, this command has a return immediately after calling it, regardless of the
	command process. If SYNC is 1, it indicates synchronous execution. After calling this
	command, it will not return until it is executed completely
Example	Go(P1)
	MoveR({20,20,20},"AccelS=100 SpeedS=100 CP=100")

2.9 Motion Parameter Commands

Command	Description
Accel	Set the acceleration rate. This command is valid only when the motion mode is Go , Jump , or MoveJ
AccelS	Set the acceleration rate. This command is valid only when the motion mode is Move , Arc3 , or Circle3
Speed	Set the velocity rate. This command is valid only when the motion mode is Go , Jump , or MoveJ
SpeedS	Set the velocity rate. This command is valid only when the motion mode is Move , Arc3 , or Circle3
Arch	Set the index of sets of parameters (StartHeight , zLimit , EndHeight) in Jump mode
СР	Set the continuous path function
LimZ	Set the maximum lifting height in the Jump mode

Table 2.20 Accel command

Function	Accel(R)
Description	Set the acceleration rate. This command is valid only when the motion mode is Go , Jump , or MoveJ
Parameter	R: Percentage. Value range: 1 - 100
Example	Accel(50) Go(P1)
	The robot moves to point P1 with 50% acceleration rate

Table 2.21 AccelS command

Function	AccelS(R)
Description	Set the acceleration rate. This command is valid only when the motion mode is Move , Arc3 , or Circle3
Parameter	R: Percentage. Value range: 1 - 100
Example	AccelS(20) Move(P1) The robot moves to point P1 with 20% acceleration rate

Table 2.22	Speed command

Function	Speed(R)	
Description	Set the velocity rate. This command is valid only when the motion mode is Go, Jump, or MoveJ	
Parameter	R: Percentage. Value range: 1 - 100	
Example	Speed(20)	
	Go(P1)	
	The robot moves to point P1 with 20% velocity rate	

Table 2.23 SpeedS command

Function	SpeedS(R)
Description	Set the acceleration rate. This command is valid only when the motion mode is Move , Arc3 , or Circle3
Parameter	R: Percentage. Value range: 1 - 100
Example	SpeedS(20) Move(P1) The robot moves to point P1 with 20% velocity rate

Table 2.24 Arch command

Function	Arch(Index)
Description	Set the index of sets of parameters (StartHeight, zLimit, EndHeight) in the Jump mode
	The sets of parameters need to be set on the Config> RobotParams>PlayBack Arch of DobotSCStduio. For details, please see <i>1.2.1 Setting Motion Parameter</i>
Parameter	Index: Index of the sets parameters. Value range: 0 - 9

Issue V1.0 (2020-06-03)User GuideCopyright © Yuejiang Technology Co., Ltd

	This parameter is valid only when the right index has been selected from the Config > RobotParams>PlayBack Arch of DobotSCStduio
Example	Arch(1)
	Jump(P1)

Table 2.25 CP command

Function	CP(R)
Description	Set the continuous path rate. This command is valid only when the motion mode is Go , Move , Arc3 , Circle3 , or MoveJ
Parameter	R: Continuous path rate. Value range: 0 -100
	0 indicates that the Continuous path function is disabled
Example	CP(50)
	Move(P1)
	Move(P2)
	The robot moves from point P1 to point P2 with 50% Continuous path ratio

Figure 2.1 Continuous path

Table 2.26	LimZ command
------------	--------------

Function	LimZ(zValue)
Description	Set the maximum lifting height in Jump mode
Parameter	zValue: The maximum lifting height which cannot exceed the Z-axis limiting position of the robot
Example	LimZ(80) Jump(P," Start=10 ZLimit=LimZ End=50 ")

Issue V1.0 (2020-06-03)

2.10 Input/output Commands

Table 2.27 Input/output command

Command	Description
DI	Get the status of the digital input port
DO	Set the status of the digital output port (Queue command)
DOExecute	Set the status of the digital output port (Immediate command)

Dobot robot system supports two kinds of commands: Immediate command and queue command:

- Immediate command: The robot system will process the command once received regardless of whether there is the rest commands processing or not in the current controller;
- Queue command: When the robot system receives a command, this command will be pressed into the internal command queue. The robot system will execute commands in the order in which the commands were pressed into the queue.

Function	DI(<i>index</i>)
Description	Get the status of the digital input port
Parameter	index: Digital input index. Value range: 1 - 16
Return	 When an index is set in the DI function, DI(index) returns the status (ON/OFF) of this speicified input port When there is no index in the DI function, DI() returns the status of all the input ports, which are saved in a table For example, local di=(), the saving format is {num = 24 value = {0x55, 0xAA, 0x52}}, you can obtain the status of the specified input port with di.num and di.value[n]
Example	if (DI(1))==ON then Move(P1) end The robot moves to point P1 when the status of the digital input port 1 is ON

Table 2.28 Digital input command

Table 2.29	Digital output command	(Queue command)
------------	------------------------	-----------------

Function	DO(index, ON OFF)
Description	Set the status of digital output port (Queue command)
Parameter	 index: Digital output index. Value range: 1- 24 ON/OFF: Status of the digital output port. ON: High level; OFF: Low level
Example	DO(1,ON)
	Set the status of the digital output port 1 to ON

Table 2.30 Digital output command (Immediate command)

Function	DOExecute(<i>index, ON</i> OFF)
Description	Set the status of digital output port (Immediate command)
Parameter	 index: Digital output index. Value range: 1 - 24 ON/OFF: Status of the disited super to ON. High leaves OFF: I am leaves
	• ON/OFF: Status of the digital output port. ON: High level; OFF: Low level
Example	DOExecute(1,OFF)
	Set the status of the digital output port 1 to OFF

2.11 Program Managing Commands

Table 2.31	Program	managing	command
	i iogiaiii	managing	oominana

Command	Description
Wait	Set the delay time for robot motion commands
Sleep	Set the delay time for all commands
Pause	Pause the running program
ResetElapsedTime	Start timing
ElapsedTime	Stop timing
System	Get the current time

Table 2.32 Wait command

Function	Wait(<i>time</i>)
Description	Set the delay time for robot motion commands
Parameter	time: Delay time. Unit: ms

Issue V1.0 (2020-06-03)

Example	Go(P1)
	Wait(1000)
	Wait for 1000ms after the robot moves to point P1

Table 2.33	Sleep command
------------	---------------

Function	Sleep(<i>time</i>)
Description	Set the delay time for all commands
Parameter	time: Delay time. Unit: ms
Example	while true do
	Speed(100)
	Go(P1)
	sleep(3)
	Speed(100)
	Accel(40)
	Go(P2)
	sleep(3)
	end

Table 2.34 Pause command

Function	Pause()
Description	Pause the running program
	When the program runs to this command, robot pauses running and the button on DobotSCStduio turns into . If the robot continues to run, please click
Parameter	None

Example	while true
	do
	Go(P1)
	Go(P2)
	Pause()
	Go(P3)
	Go(P4)
	end
	The robot moves to point P2 and then pauses running

Table 2.35	Star timing	command
------------	-------------	---------

Function	ResetElapsedTime()
Description	Start timing after all commands before this command are executed completely. Use in conjunction with ElapsedTime() command For example: Get the execution time that a piece of code takes
Parameter	None
Return	None
Example	Go(P2, " Speed=100 Accel=100")
	ResetElapsedTime()
	for i=1,10 do
	Jump(P1, " Speed=100 Accel=100 Start=0 End=0 ZLimit=185")
	Jump(P2, " Speed=100 Accel=100 Start=0 End=0 ZLimit=185")
	end
	<pre>print (ElapsedTime())</pre>
	Sleep(1000)

Table 2.36 Stop timing command

Function	ElapsedTime()
Description	Stop timing and return the time difference. Use in conjunction with ResetElapsedTime() command
Parameter	None
Return	Time difference. Unit: ms

Issue V1.0 (2020-06-03)

Example	Go(P2, " Speed=100 Accel=100")
	ResetElapsedTime()
	for i=1,10 do
	Jump(P1, " Speed=100 Accel=100 Start=0 End=0 ZLimit=185")
	Jump(P2, " Speed=100 Accel=100 Start=0 End=0 ZLimit=185")
	end
	<pre>print (ElapsedTime())</pre>
	Sleep(1000)

Table 2.37Get current time command

Function	Systime()
Description	Get the current time
Parameter	None
Return	Current time
Example	Go(P2, " Speed=100 Accel=100")
	local time1=Systime()
	for i=1,10 do
	Jump(P1, "Speed=100 Accel=100 Start=0 End=0 ZLimit=185")
	Jump(P2, " Speed=100 Accel=100 Start=0 End=0 ZLimit=185")
	end
	local time2=Systime()
	local time = time2 - time1
	Sleep(1000)

2.12 Pose Getting Command

Table 2.38	Pose command (1)

Description Get the current pose of the robot under the Cartesian coordinate system If you have set the User or Tool coordinate system, the current pose is under the current User Tool coordinate system	Function	GetPose()
If you have set the User or Tool coordinate system, the current pose is under the current User Tool coordinate system	Description	Get the current pose of the robot under the Cartesian coordinate system
Decemeter News		If you have set the User or Tool coordinate system, the current pose is under the current User or Tool coordinate system
	Parameter	None
Return Cartesian coordinate of the current pose	Return	Cartesian coordinate of the current pose

Issue V1.0 (2020-06-03)

Example	local currentPose = GetPose()
	Get the current pose
	local liftPose = {armOrientation = left , coordinate = {currentPose.coordinate[1], currentPose.
	coordinate[2], currentPose. coordinate[3], currentPose. coordinate[4] }, tool = currentPose.tool,
	user = currentPose.user}
	Lift a certain height
	Go(liftPose,"Speed=100 Accel=100")
	Go(P1)

Table 2.39	Pose command (2	2)
------------	-----------------	----

Function	GetAngle()
Description	Get the current pose of the robot under the Joint coordinate system
Parameter	None
Return	Joint coordinate of the current pose
Example	local armPose
	local joint = GetAngle()
	Get the current pose
	if joint.joint[2] > 0 then
	armPose = "right"
	else
	armPose = "left"
	end
	<pre>local liftPose = {armOrientation = armPose , joint = {joint.joint[1], joint.joint[2], joint.joint[3], joint.joint[4]}, tool = 0, user = 0}</pre>

2.13 TCP

Table 2.40 Create TCP command

Function	err, socket = TCPCreate(<i>isServer</i> , <i>IP</i> , <i>port</i>)
Description	Create a TCP network
	Only support a single connection

Parameter	isServer: Whether to create a server. 0: Create a client; 1: Create a server
	IP: IP address of the server, which is in the same network segment of the client without conflict
	port: Server port
	When the robot is set as a server, port cannot be set to 502 and 8080. Otherwise, it will be in
	conflict with the Modbus default port or the port used in the conveyor tracking application,
	causing the creation to fail
Return	егт:
	0: TCP network is created successfully
	1: TCP network is created failed
	Socket: Socket object
Example	Please refer to Program 2.1 and Program 2.2

Table 2.41	TCP connection command
10010 2.11	

Function	TCPStart(socket, timeout)	
Description	Connect a client to a server with the TCP protocol	
Parameter	socket: Socket object timeout: Wait timeout. Unit: s. If timeout is 0, the connection is still waiting. If not, after exceeding the timeout, the connection is exited.	
Return	 0: TCP connection is successful 1: Input parameters are incorrect 2: Socket object is not found 3: Timeout setting is incorrect 4: If the robot is set as a client, it indicates that the connection is wrong. If the robot is set as a server, it indicates that receiving data is wrong 	
Example	Please refer to Program 2.1 and Program 2.2	

Table 2.42 Receive data command

Function	err, Recbuf = TCPRead(socket, timeout, type)	
Description	Robot as a client receives data from a server	
	Robot as a server receives data from a client	

Issue V1.0 (2020-06-03)

Parameter	socket: socket object	
	timeout: Receiving timeout. Unit: s. If timeout is 0 or is not set, this command is a block reading.	
	Namely, the program will not continue to run until receiving data is complete. If not, after	
	exceeding the timeout, the program will continue to run regardless of whether receiving data is	
	complete	
	type: Buffer type. If type is not set, the buffer format of RecBuf is a table. If type is set to string ,	
	the buffer format is a string	
Return	err:	
	0: Receiving data is successful	
	1: Receiving data is failed	
	Recbuf: Data buffer	
Example	Please refer to Program 2.1 and Program 2.2	

Table 2.43Send data command

Function	TCPWrite(socket, buf, timeout)
Description	The robot as a client sends data to a server
	The robot as a server sends data to a client
Parameter	socket: Socket object
	buf: Data sent by the robot
	timeout: Timeout. Unit: s. If timeout is 0 or not set, this command is a block reading. Namely,
	the program will not continue to run until sending data is complete. If not, after exceeding the
	timeout, the program will continue to run regardless of whether sending data is complete
Return	0: Sending data is successful
	1: Sending data is failed
Example	Please refer to Program 2.1 and Program 2.2

Table 2.44 Release TCP network command

Function	TCPDestroy(socket)
Description	Release a TCP network
Parameter	socket: Socket object
Return	0: Releasing TCP is successful
	1: Releasing TCP is failed
Example	Please refer to Program 2.1 and Program 2.2

- Only a single TCP connection is supported. Please start the server before connecting • a client. Please shut down the client before disconnection, to avoid re-connection failure since the server port is not released in time.
- ٠ When the robot is set as a server, the IP address of the robot can be checked and modified on the Config> NetworkSetting page of DobotSCStudio. Also, the port cannot be set to 502 and 8080. Otherwise, it will be in conflict with the Modbus default port or the port used in the conveyor tracking application, causing the creation to fail.

local ip="192.168.5.1"	// IP address of the robot as a server
local port=6001	// Server port
local err=0	
local socket=0	
err, socket = TCPCreate(true, ip, port)	
if $\operatorname{err} == 0$ then	
err = TCPStart(socket, 0)	
if $err == 0$ then	
local RecBuf	
while true do	
TCPWrite(socket, "tcp server test	") // Server sends data to client
err, RecBuf = TCPRead(socket,0,	"string") // Server receives the data from client
if $err == 0$ then	
Go(P1)	//Start to run motion commands after the server receives data
Go(P2)	
print(Recbuf)	
else	
print("Read error " err)	
break	
end	
end	
else	
print("Create failed " err)	
end	
TCPDestroy(socket)	
else	
Issue V1.0 (2020-06-03)	User Guide Copyright © Yuejiang Technology Co., Ltd

Program 2.1 TCP server demo


```
print("Create failed ".. err)
```

end

local ip="192.168.5.25"	// External equipment such as a camera is set as the server
local port=6001	// Server port
local err=0	
local socket=0	
err, socket = TCPCreate(false, ip, port)	
if $err == 0$ then	
err = TCPStart(socket, 0)	
if $err == 0$ then	
local RecBuf	
while true do	
TCPWrite(socket, "tcp client	test") // Client sends data to server
TCPWrite(socket, {0x01, 0x0	2, 0x03, 0x04, 0x05, 0x06, 0x07})
err, RecBuf = TCPRead(socke	et, 0) // Client receives data from server
if $err == 0$ then	
Go(P1)	$\prime\prime$ Start to run motion commands after the client receives the data
Go(P2)	
print(Recbuf)	
else	
print("Read error " err)	
break	
end	
end	
else	
print("Create failed " err)	
end	
TCPDestroy(socket)	
else	
print("Create failed " err)	
end	
2.14 UDP	

Table 2.45 Create UDP network command

Function	err, socket = UDPCreate(<i>isServer</i> , <i>IP</i> , <i>port</i>)
Description	Create a UDP network
	Only a single connection is supported
Parameter	isServer: Whether to create a server. 0: Create a client; 1: Create a server
	IP: IP address of the server, which is in the same network segment of the client without conflict
	port: Server port
	When the robot is set as a server, port cannot be set to 502 or 8080. Otherwise, it will be in
	conflict with the Modbus default port or the port used in the conveyor tracking application,
	causing the creation to fail
Return	err:
	0: The UDP network is created successfully
	1: The UDP network is created failed
	socket: Socket object
Example	Please refer to Program 2.3 and Program 2.4

Table 2.46 Receive data command

Function	err, Recbuf = UDPRead(socket, timeout, type)
Description	The robot as a client receives data from a server
	The robot as a server receives data from a client
Parameter	socket: socket object
	timeout: Receiving timeout. Unit: s. If timeout is 0 or not set, this command is a block reading.
	Namely, the program will not continue to run until receiving data is complete. If not, after
	exceeding the timeout, the program will continue to run regardless of whether receiving data is
	complete
	type: Buffer type. If type is not set, the buffer format of RecBuf is a table. If type is set to string ,
	the buffer format is a string
Return	err:
	0: Receiving data is successful
	1: Receiving data is failed
	Recbuf: Data buffer
Example	Please refer to Program 2.3 and Program 2.4

Table 2.47Send data command

Function	UDPWrite(socket, buf, timeout)
Description	The robot as a client sends data to a server
	The robot as a server sends data to a client
Parameter	socket: Socket object
	buf: Data sent by the robot
	timeout: Timeout. Unit: s. If timeout is 0 or not set, this command is a block reading. Namely,
	the program will not continue to run until sending data is complete. If not, after exceeding the
	timeout, the program will continue to run regardless of whether sending data is complete
Return	0: Sending data is successful
	1: Sending data is failed
Example	Please refer to Program 2.3 and Program 2.4

- Only a single UDP connection is supported. Please start the server before connecting a client. Please shut down the client before disconnection, to avoid reconnection failure since the server port is not released in time.
- When the robot is set as a server, the IP address of the robot can be checked and modified on the Config > NetworkSetting page of DobotSCStudio. Also, the port cannot be set to 502 and 8080. Otherwise, it will be in conflict with the Modbus default port or the port used in the conveyor tracking application, causing the creation to fail.

local ip="192.168.5.1"	// IP address of the robot as a server
local port=6201	// Server port
local err=0	
local socket=0	
err, socket = UDPCreate(true, ip, port)	
if $err == 0$ then	
local RecBuf	
while true do	
UDPWrite(socket, "udp server test")	// Server sends data to client
err, RecBuf = UDPRead(socket, 0)	//Server receives the data from client
if $err == 0$ then	
Go(P1)	// Start to run motion commands after the server receives the data
Issue V1.0 (2020-06-03)	User Guide Copyright © Yuejiang Technology Co., Ltd

Program 2.3 UDP server demo

			Go(P2)
			print(Recbuf)
		else	
			print("Read error " err)
			break;
		end	
	end		
else			
	print('	'Crea	te failed " err)
end			

local ip="192.168.1.25"	// IP address of the external equipment
as a server	
local port=6200	// server port
local err=0	
local socket=0	
err, socket = UDPCreate(false, ip, port)	
if $err == 0$ then	
local RecBuf	
while true do	
UDPWrite(socket, "udp client test")	// Client sends data to server
UDPWrite(socket, {0x01, 0x02, 0x0	03, 0x04, 0x05, 0x06, 0x07})
err, RecBuf = UDPRead(socket, 0)	// Client receives the data from server
if $err == 0$ then	
Go(P1)	$\ensuremath{\ensuremath{\mathcal{I}}}\xspace$ Start to run motion commands after the client receives the data
Go(P2)	
print(Recbuf)	
else	
print("Read error " err)	
break	
end	
end	
else	
print("Create failed " err)	
Issue V1.0 (2020-06-03)	User Guide Copyright © Yueijang Technology Co., Ltd

end

2.15 Modbus

2.15.1 Modbus Register Description

Modbus protocol is a serial communication protocol. The robot system can communicate with external equipment by this protocol. Here, External equipment such as a PLC is set as the Modbus master, and the robot system is set as the salve.

Modbus data is most often read and written as registers. Based on our robot memory space, we also define four types of registers: coil, discrete input, input, and holding registers for data interaction between the external equipment and robot system. Each register has 4096 addresses. For details, please see as follows.

Coil register

•

Coil register address (e.g.: PLC)	Coil register address (Robot system)	Data type	Description
00001	0	Bit	Start
00002	1	Bit	Pause
00003	2	Bit	Continue
00004	3	Bit	Stop
00005	4	Bit	Emergency stop
00006	5	Bit	Clear alarm
00007-0999	6-998	Bit	Reserved
01001-04096	999-4095	Bit	User-defined

	Table 2.48	Coil	register	descri	ption
--	------------	------	----------	--------	-------

• Discrete input register

Table 2.49 Discrete input register description

Discrete input register address (e.g.: PLC)	Discrete input register address(Robot system)	Data type	Description
10001	0	Bit	Automated exit
10002	1	Bit	Ready state
10003	2	Bit	Paused state
10004	3	Bit	Running state
10005	4	Bit	Alarm state
10006-10999	5-998	Bit	Reserved

Issue V1.0 (2020-06-03)User GuideCopyright © Yuejiang Technology Co., Ltd

Discrete input register address (e.g.: PLC)	Discrete input register address(Robot system)	Data type	Description
11000-14096	999-4095	Bit	User-defined

• Input register

Table 2.50 Input register description

Input register address (e.g.: PLC)	Input register address (Robot system)	Data type	Description
30001-34096	0-4095	Byte	Reserved

• Holding register

Table 2.51Holding register description

Holding address (e.g.: PLC)	register	Holding address (Robot system)	register	Data type	Description
40001-41000		0-999		Byte	Reserved
41001-44095		1000-4095		Byte	User-defined

2.15.2 Command Description

Table 2.52 Rea coil register command

Function	GetCoils(addr, count)		
Description	Read the coil value from the Modbus slave		
Parameter	addr: Starting address of the coils to read. Value range: 0 - 4095		
	count: Number of the coils to read. Value range: 0 to 4096-addr		
Return	Return a table, each with the value 1 or 0, where the first value in the table corresponds to the coil value at the starting address		
Example	Read 5 coils starting at address 0		
	Coils = GetCoils(0,5)		
	Return:		
	Coils={1,0,0,0,0}		
	As shown in Table 2.47, it indicates that the robot is in the starting state		

Table 2.53Set coil register command

Function	SetCoils(addr, count, table)		
Description	Set the coil register in the Modbus slave		
	This command is not supported when the coil register address is from 0 to 5		
Parameter	Addr: Starting address of the coils to set. Value range: 6 - 4095		
	count: Number of the coils to set. Value range: 0 to 4096-addr		
	table: Coil value, stored in a table		
Return	None		
Example	Set 5 coils starting at address 1024		
	local Coils = $\{0,1,1,1,0\}$		
	SetCoils(1024, #coils, coils)		

Table 2.54 Read discrete input register command

Function	GetInBits(addr, count)		
Description	Read the discrete input value from Modbus slave		
Parameter	addr: Starting address of the discrete inputs to read. Value range: 0-4095		
	count: Number of the discrete inputs to read. Value range: 0 to 4096-addr		
Return	Return a table, each with the value 1 or 0, where the first value in the table corresponds to the discrete value at the starting address		
Example	Read 5 discrete inputs starting at address 0		
	inBits = GetInBits(0,5)		
	Return:		
	$inBits = \{0,0,0,1,0\}$		
	As shown in Table 2.48, it indicates the robot is in running state		

Table 2.55Read input register command

Function	GetinRegs(addr, count, type)
Description	Read the input register value with the specified data type from the Modbus slave

Parameter	addr: Starting address of the input registers. Value range: 0 - 4095		
	count: Number of the input registers to read. Value range: 0 ~ 4096-addr		
	type: Data type		
	• Empty: Read 16-bit unsigned integer (two bytes, occupy one register)		
	• "U16": Read 16-bit unsigned integer (two bytes, occupy one register)		
	• "U32": Read 32-bit unsigned integer (four bytes, occupy two registers)		
	• "F32": Read 32-bit single-precision floating-point number (four bytes, occupy two registers)		
	• "F64": Read 64-bit double-precision floating-point number (eight bytes, occupy four registers)		
Return	Return a table, the first value in the table corresponds to the input register value at the starting address		
Example	Example 1: Read a 16-bit unsigned integer starting at address 2048		
	data = GetInRegs(2048,1)		
	Example 2: Read a 32-bit unsigned integer starting at address 2048		
	data = GetInRegs(2048, 1, "U32")		

Table 2.56 Read holding register command

Function	GetHoldRegs(addr, count, type)		
Description	Read the holding register value from the Modbus slave according to the specified data type		
Parameter	addr: Starting address of the holding registers. Value range: 0 - 4095		
	count: Number of the holding registers to read. Value range: 0 to 4096-addr		
	type: Datatype		
	• Empty: Read 16-bit unsigned integer (two bytes, occupy one register)		
	• "U16": Read 16-bit unsigned integer (two bytes, occupy one register)		
	• "U32": Read 32-bit unsigned integer (four bytes, occupy two registers)		
	• "F32": Read 32-bit single-precision floating-point number (four bytes, occupy two registers)		
	• "F64": Read 64-bit double-precision floating-point number (eight bytes, occupy four registers)		
Return	Return a table, the first value in the table corresponds to the input register value at the starting address		

Example	Example 1: Read a 16-bit unsigned integer starting at address 2048
	data = GetHoldRegs(2048,1)
	Example 1: Read a 32-bit unsigned integer starting at address 2048
	data = GetInRegs(2048, 1, "U32")

Table 2.57 Set holding register command

Function	SetHoldRegs(addr, count, table, type)		
Description	Set the holding register in the Modbus slave		
Parameter	addr: Starting address of the holding registers to set. Value range: 0 - 4095 count: Number of the holding registers to set. Value range: 0 to 4096-addr table: Holding register value, stored in a table type: Datatype		
	 Empty: Read 16-bit unsigned integer (two bytes, occupy one register) "U16": Set 16-bit unsigned integer (two bytes, occupy one register) "U32": Set 32-bit unsigned integer (four bytes, occupy two registers) "F32": Set 32-bit single-precision floating-point number (four bytes, occupy two registers) "F64": Set 64-bit double-precision floating-point number (eight bytes, occupy four registers) 		
Return	None		
Example	Example1: Set a 16-bit unsigned integer starting at address 2048 local data = {6000} SetHoldRegs(2048, #data, data, "U16") Example2: Set a 64-bit double-precision floating-point number starting at address 2048 local data = {95.32105} SetHoldRegs(2048, #data, data, "F64")		

2.16 ECP

ECP (External Control Point) is a coordinate system data used for defining the robot position and orientation at a processing point on the tip of the outside fixed tool, as shown in Figure 2.2. After setting the ECP, the robot can grab a part and move following the specified trajectory around the ECP, for example, sewing application.

Figure 2.2 ECP

Table 2.58 E	nable ECP	command
--------------	-----------	---------

Function	ECP(<i>isOn</i>)
Description	Enable the ECP function
Parameter	isOn: Whether to enable the ECP. ON: Enable; OFF: Disable
Return	None
Example	Please refer to Program 2.5

Table 2.59 Set ECP command

Function	ECPSet(point)
Description	Set ECP
	This command is valid only when enabling the ECP
Parameter	point: Taught point
Return	None
Example	P1={armOrientation="left", coordinate={630,-32, 95.5,90}, tool=0, user=0} ECPSet(P1)

Issue V1.0 (2020-06-03)User GuideCopyright © Yuejiang Technology Co., Ltd

Program 2.5 ECP demo

while true do

ECPSet(P1) ECP(ON) Move(P2, "SpeedS=80 CP=10") Move(P3, "SpeedS=80 CP=10") Arc3(P4,P5, "SpeedS=80 CP=10") Move(P6, "SpeedS=80 CP=10") ECP(OFF)

end

2.17 Process Command

2.17.1 Conveyor Tracking Command

Table 2.60 Set conveyor parameter command

Function	CnvVison(<i>CnvID</i>)
Description	Set conveyor number to create a tracing queue
Parameter	CnvID: Conveyor number
Return	0: No error
	1: Error
Example	CnvVison(1)
	Send the information (resolution ratio, Starting position, direction and bound) of Conveyor 1 to the robot system

Table 2.61 Obtain status of the object

Function	GetCnvObject(CnvID, ObjID)
Description	Obtain the information of the part on the conveyor to check whether the part is in the pickup area
Parameter	CnvID: Conveyor index
	ObjID: Part index
Return	Part status: Whether there is a part. Value range: true or false
	Part type
	Part coordinate (x,y,r)

Example	$P111 = \{0,0,0\}$
	while true do
	flag,typeObject,P111 = GetCnvObject(0,0)
	if flag == true then
	break
	end
	Sleep(20)
	end

Table 2.62 Set offset command

Function	SetCnvPointOffset(xOffset,yOffset)
Description	Set X,Y axes offset under the set User coordinate system
Parameter	xOffset: X axis offset
	yOffset: Y axis offset
	Unit: mm
Return	0: No error
	1: Error

Table 2.63 Set time compensation command

Function	SetCnvTimeCompensation (time)
Description	Set time compensation This command is used for compensating the pick-up position offset in the moving direction of the conveyor which is caused by taking photos with a time delay
Parameter	time: time-offset. Unit: ms
Return	0: No error 1: Error

Table 2.64 Synchronize conveyor command

Function	SyncCnv (<i>CnvID</i>)
Description	Synchronize the specified conveyor
	The motion commands used between SyncCnv(<i>CnvID</i>) and StopSyncCnv(<i>CnvID</i>) only support Move command

Issue	V1.0	(2020-06-03)
-------	------	--------------

Copyright © Yuejiang Technology Co., Ltd

Parameter	CnvID: Conveyor index
Return	0: No error
	1: Error

Table 2.65 Stop synchronizing conveyor command

Function	StopSyncCnv (CnvID)
Description	Stop synchronizing the conveyor
	The other commands following this command will not be executed until this command running is completed
Parameter	CnvID: Conveyor index
Return	0: No error
	1: Error

2.17.2 Pallet Commands

Table 2.66 Create matrix pallet command

Function	Pallet = MatrixPallet (<i>index</i> , "IsUnstack= <i>true</i> Userframe= 1")
Description	Instantiate matrix pallet
Parameter	Index: Matrix pallet index
	Optional parameter:
	IsUnstack: Stack mode. Value range: true or false. true: Dismantling mode . false: Assembly
	mode. If not set, the default is assembly mode
	Userframe: User coordinate system index. If not set, the default is User 0 coordinate system
Return	Matrix pallet object
Example	myPallet = MatrixPallet(0, "IsUnstack=tsrue Userframe=8")

Table 2.67 Set the next stack index command

Function	SetPartIndex (Pallet, index)
Description	Set the next stack index which is to be operated
Parameter	Pallet: Pallet object
	index: 0 The next stack index. Initial value: 0
Return	None

Issue V1.0 (2020-06-03)

Copyright © Yuejiang Technology Co., Ltd

Example	local myPallet = MatrixPallet(0, "IsUnstack=true Userframe=8")
	SetPartIndex(myPallet,1)
	The next stack index to be operated is 2

Table 2.68 Get the current operated stack index

Function	GetPartIndex (Pallet)	
Description	Get the current operated stack index	
Parameter	Pallet: Pallet object	
Return	The current operated stack index	
Example	local index=GetPartIndex(myPallet)	
	If the return value is 1, it indicates that the current operated stack index is 2	

Table 2.69 Set the next pallet layer index command

Function	SetLayerIndex (Pallet, index)	
Description	Set the next pallet layer index which is to be operated	
Parameter	Pallet: Pallet object	
	index: The next pallet layer index. Initial value: 0	
Return	None	
Example	local myPallet = MatrixPallet(0, "IsUnstack=true Userframe=8") SetPartIndex(myPallet,1)	
	The next pallet layer index to be operated is 2	

Table 2.70 Get the current pallet layer index command

Function	GetLayerIndex (Pallet)	
Description	Get the current pallet layer index	
Parameter	Pallet: Pallet object	
Return	The current pallet layer index	
Example	local index=GetLayerIndex(myPallet)	
	If the return value is 1, it indicates that the current operated pallet layer index is 2	

Table 2.71 Reset command

Function	Restet (Pallet)	
Description	Reset pallet	
Parameter	Pallet: Pallet object	
Return	None	
Example	local myPallet = MatrixPallet(0, "IsUnstack=true Userframe=8")	
	Reset(myPallet)	

Table 2.72Check the pallet status command

Function	IsDone (Pallet)	
Description	Check whether the stack assembly or dismantling is complete	
Parameter	Pallet: Pallet object	
Return	true: Finished	
	false: Un-finished	
Example	Result = IsDone(myPallet)	
	If (result == true)	

Table 2.73 Release pallet command

Function	Release (Pallet)
Description	Release pallet object
Parameter	Pallet: Pallet object
Return	None
Example	Release(myPallet)

Table 2.74 MoveIn command

Function	MoveIn (Pallet, "velAB=20 velBC=30 accAB=20 accBC=10 CP=20 SYNC=1")
Description	The robot moves from the current position to the first stack position as the configured stack assembly path

Parameter	Required parameter:				
	Pallet: Pallet object				
	Optional parameter:				
	• velAB: Velocity rate when the robot moves from the transition point to the preparation point. Value range: 1-100				
	• velBC: Velocity rate when the robot moves from the preparation point to the first stack point. Value range: 1-100				
	• accAB: Acceleration rate when the robot moves from the transition point to the preparation point. Value range: 1-100				
	• accBC: Acceleration rate when the robot moves from the preparation point to the first stack point. Value range: 1-100				
	• CP: Whether to set continuous path function. Value range: 0- 100				
	• SYNC: Synchronization flag. Value range: 0 or 1. If SYNC is 0 , it indicates asynchronous execution, this command has a return immediately after calling it, regardless of the command process. If SYNC is 1 , it indicates synchronous execution. After calling this command, it will not return until it is executed completely				
Return	None				
Example	MoveIn(myPallet, "velAB=90 velBC=50")				

Table 2.75 MoveOut command

Function	MoveOut (Pallet, "velAB=20 velBC=30 accAB=20 accBC=10 CP=20 SYNC=1")		
Description	The robot moves from the current position to the transition point as the configured stack dismantling path		

Parameter	Required parameter			
	Pallet: Pallet object			
	Optional parameter			
	• velAB: Velocity rate when the robot moves from the preparation point to the transition point.			
	Value range: 1-100			
	• velBC: Velocity rate when the robot moves from the first stack point to the preparation			
	point. Value range: 1-100			
	• accAB: Acceleration rate when the robot moves from the preparation point to the transition			
	point. Value range: 1-100			
	• accBC: Acceleration rate when the robot moves from the first stack point to the preparation			
	point. Value range: 1-100			
	• CP: Whether to set continuous path function. Value range: 0- 100			
	• SYNC: Synchronization flag. Value range: 0 or 1. If SYNC is 0 , it indicates asynchronous			
	execution, this command has a return immediately after calling it, regardless of the			
	command process. If SYNC is 1, it indicates synchronous execution. After calling this			
	command, it will not return until it is executed completely			
Return	None			
Example	MoveOut(myPallet, "velAB=90 velBC=50")			

Figure 2.3 and Figure 2.4 show the stack assembly path and dismantling path respectively. Point A is the transition point, which is fixed or varies with the pallet layer. Point B is the preparation point which is calculated by the target point and the set offset. Point C is the first stack point.

Figure 2.3 Stack assembly path

Issue	V1 0	(2020-06-03)	

Figure 2.4 Stack dismantling path

3. Process Guide

3.1 Conveyor Tracking

3.1.1 Overview

Conveyor tracking is that the vision system or sensor system finds the parts on the conveyor when conveyor moves constantly and the robot picks them up as they move.

3.1.2 Building Environment

Figure 3.1 shows the communication process of conveyor tracking. Vision system or photoelectric sensor for detection is selected based on site requirements. If the photoelectric sensor is used, the part is detected by a change in the digital input data. If the vision system is used, the part is detected by the camera and this is triggered by the rising edge of digital output signal.

Figure 3.1 Communication process of the conveyor tracking

Figure 3.2 shows the full process environment of conveyor tracking. Please select a vision system or photoelectric sensor for detection based on site requirements.

Moving direction of conveyor

3.1.2.1 Encoder

An Encoder is used for recording the conveyor moving distance and the part position and reporting them to the robot system by a counter. Please connect the Encoder to the **EtherCAT** interface on the robot system with the high-speed counter and communication module (called them as counter module), as shown in Figure 3.3. The E6B2-CWZ1X(1000P/R)Encoder, Beckhoff EL5101 high-speed counter, and Beckhoff EK1100 communication module are recommended in this application.

Figure 3.3 Connection between Encoder and robot system

3.1.2.2 Photoelectric Sensor

The photoelectric sensor outputs different level signals according to whether the part is detected or not. When you connect the photoelectric sensor to a DI interface on the robot system, the photoelectric sensor can detect parts by a change in this DI interface.

3.1.2.3 Vision System

A vision system is communicated with the robot system by the TCP/IP protocol and is triggered by the DO interface on the robot system to detect the part.

• If the robot system version is earlier than V3.0.0.20190219121343, the DO 16 is triggered to take photos for detecting, as shown in Figure 3.4. You can check the robot system version on the Config>BasicConfig> Version page of the DobotSCStudio.

Figure 3.4 Vision system connection (1)

• If the robot system version is **V3.0.0.20190219121343** or later, the **DO 10** is triggered to take photos for detecting, as shown in Figure 3.5.

Figure 3.5 Vision system connection (2)

3.1.3 Calibrating Conveyor

Before tracking parts, please calibrating the conveyor, for obtaining the positional relationship between the conveyor and the robot. In the following steps, we assume that the Y-axis positive

Issue v 1.0 (2020-06-03)	User Guide	Copyright S ruejiang Technology Co., Ltd
$I_{\text{coup}} V1 0 (2020 06 03)$	User Guide	Convright @ Vueijang Technology Co. I td

direction under the base coordinate system is coincident with the moving direction of the conveyor.

Prerequisites

- The robot has been powered on.
- The calibration kit has been installed at the end of the robot.

Procedure

Step 1 Put down a label on the conveyor, as shown in Figure 3.6.

Figure 3.6 Put down a label on the conveyor

Step 2 Click Sconfig>GlobalCoordinate>Coordinate User.

The Coordinate User page is displayed, as shown in Figure 3.7.

oord	x x	Y		Z		Rx					
400.		0.0000	0.0		0.						
								Usero	x	τ ν ν ν ν ν	
							4 Axis First Point				
							4 Axis First Foint X:	0.0000		0.0000	÷
							4 Axis First Foint X: Z:	0.0000	↓ Y: ↓ R:	0.0000	4 7 4
							4 Axis First Foint X: Z: Get First Foint	0.0000 0.0000	↓ Y: ↓ R:	0.0000	4 ¥ 4 ¥
							4 Axis First Point X: Z: Get First Point Second Point V:	0.0000 0.0000	 ↓ Y: ↓ R: 	0.0000	4 V 4 V 4 V
							4 Axis First Point X: Z: Get First Point Second Point X:	0.0000 0.0000 0.0000	⇒ Y: ⇒ R:	0.0000	*

Figure 3.7 User coordinate system page

Step 3 Enable the motor and jog the robot to the label position on the conveyor, and clickGet First Point on the First Point section, as shown in Figure 3.8. We called this point as point A, which is the origin of the User coordinate system.

Figure 3.8 Conveyor calibration

Step 4 Control the conveyor move a specified distance.

Issue V1.0 (2020-06-03)	User Guide	Copyright © Yuejiang Technology Co., Ltd
	~ ~	

Step 5 Enable the motor and jog the robot to the label position on the conveyor, and click Get Second Point on the Second Point section. We called this point as point B. The line from point A to point B is defined as the positive direction of X-axis. And then the Y-axis and Z-axis can be defined based on the right-handed rule, as shown in Figure 3.9.

Figure 3.9 User coordinate system calibration

Step 6 Click Add to generate the User coordinate system.

We assume that the User 1 coordinate system is used. If the R-axis coordinate is 90°, it indicates that the calibration is successful. Otherwise, please re-calibrate it.

The R-axis coordinate after calibration depends on the positional relationship between robot and conveyor.

- If the moving direction of the conveyor is the same with the X-axis positive direction under the base coordinate system, the R-axis coordinate after calibration is 0°.
- If the moving direction of the conveyor is the same with the X-axis negative direction under the base coordinate system, the R-axis coordinate after calibration is 180° or -180°.
- If the moving direction of the conveyor is the same with the Y-axis positive direction under the base coordinate system, the R-axis coordinate after calibration is 90°.
- If the moving direction of the conveyor is the same with the Y-axis negative direction under the base coordinate system, the R-axis coordinate after calibration is -90°.

```
Issue V1.0 (2020-06-03)
```


3.1.4 Configuring Conveyor

Prerequisites

- The robot has been powered on.
- The calibration kit has been installed at the end of the robot.

- The full process should be operated under the base coordinate system and the matched calibration kit is required.
- Please be sure to follow the steps to operate, otherwise, the parameter setting will fail.

Procedure

Step 1 Click Process>Tracking.

The conveyor tracking page is displayed, as shown in Figure 3.10.

Conveyor Index: 0 v	Preview	Base
	C	Encoder
		Sensor
		Border
Conveyor Type: Linear - Encoder Channel: 0 -		
User Coord Index: 0 The Data Source: Sensor		
		Reset

Figure 3.10 Conveyor tracking page

Step 2 Set the basic parameters.

Table 3.1 shows the basic parameter description.

Table 3.1	Basic parameter	description
-----------	-----------------	-------------

Parameter		Descriptio	n
Conveyor index		Conveyor	index
Issue V1.0 (2020-06-03) User C		Guide	Copyright © Yuejiang Technology Co., Ltd

Parameter	Description
	This parameter cannot be set
Conveyor Type	Conveyor type
	• Linear
	• Circular
	Only linear type is supported
Encoder Channel	Encoder channel
	This parameter cannot be set
User Coord Index	User coordinate system index
	Please select the right index according to the user
	coordinate system set in 3.1.3 Calibrating Conveyor
Data Source	Detection Mode
	• Sensor: Use a sensor to detect parts
	• Camera: Use a vision system to detect parts
	Please select the mode based on site requirements

Step 3 Click **Encoder** to calibrate the Encoder.

1. Put down a label on the conveyor, as shown in Figure 3.11.

Figure 3.11 Put down a label on the conveyor

2. Enable the motor and jog the robot to the label position on the conveyor, then click **1**, as shown in Figure 3.12 and Figure 3.13.

Conveyor Index: 0 -				Preview	Base
Pos	х	Y	Z	Encoder	Encoder Sensor
1	382. 4928	116.9104	24. 4331	0.0000	Border
2	0.0000	0.0000	0.0000	0.0000	
Calcul	ation				
	Encoder Direction:	• Positive	O Negative		
E	ncoder Resolution:	0.0000	inc/mm		
					Reset

Figure 3.12 Encoder calibration page

Figure 3.13 Encoder calibration

- 3. Control the conveyor to move a specified distance.
- 4. Enable the motor and jog the robot to the label position on the conveyor, then click 2.
- 5. Click **Calculation** to obtain the Encoder resolution.

Issue V1.0 (2020-06-03)	User Guide	Copyright © Yuejiang Technology Co., Ltd
	04	

Encoder resolution is the pulse increment of the Encoder per unit length that conveyor moves

If Data Source is senor, please execute Step 4. If not, please execute Step 5.

Step 4 (Optional) Click **Sensor** to calibrate the sensor, as shown in Figure 3.14.

onveyor Index: 0 💌	Preview	Base
Sensor Base Comm DI: 0 Repeat Thres: 0.0000 mm		Encoder Sensor Border
Trigger Type: Rising * Start Listen		
Sensor Calibration Teach Mech Pos X 0.0000 mm		
Y 0.000 mm E 0.0000 count		
Calc Sensor Pos X 0.0000 mm		
Y 0.000 mm E 0.0000 count		Reset

Figure 3.14 Sensor calibration page

Sensor calibration is to obtain the position where the sensor finds the part so that the position of the part under the User coordinate system at every moment can be calculated based on the coordinate offset when the part moves along with the conveyor.

Control the conveyor move to a position where the part on the conveyor is within the workspace of the robot and has been passed the sensor, and jog the robot to the part center for obtaining the current taught position. At the same time, the robot records the moving distance of the conveyor after the part is passed the sensor. According to the current taught position and the moving distance of the conveyor, we can get the part position when the sensor locates the part. For details, please see as follows.

1. Set the related parameters on the sensor setting page.

Table 3.2 lists the sensor parameter description.

Table 3.2	Sensor	parameter	description
-----------	--------	-----------	-------------

Parameter		Descript	ion
Conveyor index		Conveyo	r index
Issue V1.0 (2020-06-03)	User	Guide	Copyright © Yuejiang Technology Co., Ltd

Parameter	Description
	This parameter cannot be set
Comm DI	This parameter cannot be set
Trigger Type	Signal outputted when the sensor finds the part
	• Raising edge
	• Falling edge
	This parameter cannot be set
Repeat Thres	Reject distance. This parameter is set based on site requirements
	This is used to prevent the registration of the duplicate
	parts

2. Click Start Listen.

- 3. Put a part on the upstream area of the conveyor and Control the conveyor move. After the sensor finds the part and meanwhile the part is in the workspace of the robot, please control the conveyor stop.
- 4. Make the 3-position in the middle gear to enable the motor and jog the robot to the part center, then click **Teach Mech Pose** to obtain the current position.
- 5. Click **Calc Sensor Pos** to obtain the position where the sensor finds the part

Step 5 (Optional) Click **Camera** to calibrate the vision system, as shown in Figure 3.15.

Before calibrating the vision system, you need to set the robot IP address and port on the vision software for communication between the robot and vision system with the TCP/IP protocol. The robot IP address is 192.168.5.1, and the port is 8080. The data format is as follows.

- The parts found in the same frame are sent together.
- The data format of a part is (x,y,r,classID). classID is the part type.
- Different part data is separated by a semicolon.
- A frame is terminated by & character.

e.g.: x1,y1,r1,1;x2,y2,r2,4;x3,y3,r3,2&

Vision software depends on the vision brand. So, the settings about the vision system are different. The details on how to use the vision software are not described in this topic.

Conveyor Index: 0 -	•]		Preview	Base
Base Calibratio	n			Encoder Camera
Width:	3072	Height: 2048	C	Border
Trigger DO:	0	Trigger Type: Rising *		
Interval:	0.0000 mm	Repeat Thres: 0.0000 mm		
Unit Type:	pixel 💌			
				Reset

Figure 3.15 Vision system calibration page

The vision system is to obtain the part coordinate under the User coordinate system where the camera finds it from the conveyor. So that the position of the part under the User coordinate system at every moment can be calculated based on the coordinate offset when the part moves along with the conveyor.

Place the calibration board on the conveyor which is in the vision search area and obtain the image coordinates of the nine points on the calibration board and record the current position of the conveyor. Move the conveyor to a position where the calibration board is in the robot workspace and jog the robot to the nine points on the calibration board and obtain their Cartesian coordinates respectively. At the same time, record the current position of the conveyor. Based on the Cartesian coordinates and image coordinates of the nine points and the moving distance of the conveyor, we can calculate the Cartesian coordinates where camera finds the calibration board and obtain the relationship between the image coordinate and the Cartesian coordinate. For details, please see as follows.

1. Set the basic parameters of the vision system on the **Base** tab.

Table 3.3 lists the basic parameter description.

Parameter	Description
Conveyor Index	Conveyor index
	This parameter cannot be set
Width	Resolution width

Table 3.3	Basic parameter description
-----------	-----------------------------

Parameter	Description
	Default value: 3072
Height	Resolution height
	Default value:2048
Trigger DO	his parameter cannot be set
Trigger Type	This parameter cannot be set
Interval	Interval photography
	Namely, the robot gives a DO signal to trigger
	photography each time conveyor moves a given
	distance
	The recommended value range is (1 -d)/2< Interval < (1 -d)
	l indicates the width of the vision search area in the
	conveyor moving direction and d indicates the
	maximum width of the part
Repeat Thres	Reject distance. This parameter is set based on site requirements
	This is used to prevent the registration of the duplicate
	parts
Unit Type	This parameter cannot be set

2. Click Calibration.

The calibration page is displayed.

3. Place the calibration board on the conveyor which is in the vision search area and click **Conveyor pose** to record the current Encoder value. The calibration board is shown in Figure 3.16.

Figure 3.16 Calibration board

4. Get the image coordinates of the nine points on the calibration board from the vision software after the vision system finds the calibration board and input them to the corresponding positions on the calibration page, as shown in Figure 3.17.

Conveyor Index: 0	~					Preview	Base
Base Calibrati	on						Encoder
Shot		Convey	Conveyor Pos		0.0000		Camera
Pos	Х	Y	Pos	X	Υ		Border
1	0.0000	0.0000	6	0.0000	0.0000		
2	0.0000	0.0000	7	0.0000	0.0000		
3	0.0000	0.0000	8	0.0000	0.0000		
4	0.0000	0.0000	9	0.0000	0.0000		
5	0.0000	0.0000			Next		
		Calcu	lation				Reset

Figure 3.17 Get the image coordinates

- 5. Click Next.
- 6. Move the conveyor to the position where the calibration board is in the robot workspace and stop, then click **Conveyor Pos** to obtain the current Encoder value.
- 7. Enable the motor and jog the robot to the corresponding nine points on the calibration board and click the right index on the calibration page respectively as shown in Figure 3.18 and Figure 3.19.

Figure 3.18 Vision calibration

Conveyor Index: 0	Y				Prev	riew	Base
Base Calibrati	on						Encoder
		Conveyor Pos		þ. 0000			Camera
Pos	х	У	Pos	Х	Ă	\subset	Border
1	0.0000	0.0000	6	0.0000	0.0000		
2	0.0000	0.0000	7	0.0000	0.0000		
3	0.0000	0.0000	8	0.0000	0.0000		
4	0.0000	0.0000	9	0.0000	0.0000		
5	0.0000	0.0000		Prev	rious		
		Calcu	lation				Reset
) (

Please be sure to obtain the Cartesian coordinates in the order of the image coordinates of the nine points to avoid vision calibration errors.

8. Click **Calculation** to calculate the Cartesian coordinates of the nine points as the vision system finds them and obtain the relationship between the image coordinate and the Cartesian coordinate based on the image coordinates and the Cartesian coordinates of the nine points and the moving distance of the conveyor.

Figure 3.20 Border description

Figure 3.21 Border calibration page

Table 3.4 lists the border parameter description

Parameter	Description
Conveyor Index	Conveyor Index
	This parameter cannot be set
Working upstream limit	Working upstream limit
Pickup downstream limit	Pickup downstream limit
	When the part moves out of the Pickup downstream

Table 3.4 Border parameter description

Enable the motor and jog the robot to the starting tracking position, then click 1. Working upstream limit to obtain the working upstream limit.

limit, the robot will not pick up it.

Working downstream limit

This parameter cannot be set

Enable the motor and jog the robot to the latest starting tracking position that is 2. expected to complete the process, then click Working upstream limit to obtain the working upstream limit.

Please set this parameter according to the conveyor speed and practical experience.

3. Enable the motor and jog the robot to the end tracking position, then click Working downstream limit to obtain the working downstream limit.

Step 7 Click Save.

Working downstream limit

Stop distance

3.1.5 Example

3.1.5.1 **Pickup Example Using Vision Conveyor Tracking**

In this application, we need to teach six points.

- Waiting point: P1
- Tracking point: P2
- Pickup point: P3 •
- Lifting point: P4 ٠
- Point above the placing point: P5
- Placing point: P6

If the pickup angle is required, you need to set this angle.

This topic takes the pickup application without angle requirement as an example, Figure 3.22 shows the taught positions.

Prerequisites

- The vision conveyor tracking project has been created on DobotSCStudio. For details, please see *1.5.3.1 Creating Project*.
- The robot has been connected to the air pump.
- The end effector has been mounted on the end of the robot.
- The robot has been switched to the manual mode.
- The vision software has been installed.
- (Optional) If an eccentric end effector has been mounted, please set the Tool coordinate system. For details, please see *1.2.3.1 Setting Tool Coordinate System of SCARA Robot*.

- Enable the robot motor when jogging the robot.
- Vision software depends on the vision brand. The details on how to set and create a template are not described in this topic.
- The arm orientations of P1, P2 P3, and P4 must be the same.
- You need to teach P2, P3 and P4 points under the set User coordinate system. If an eccentric end effector is used, you need to set the Tool coordinate system and then teach P2, P3 P4 points under the set Tool coordinate system.
- The J3 angle of P1 point is recommended to set to 120°, and the J4 angle is recommended to set to 0°.

Procedure

Step 1 Jog the robot to the point P1 under the basic coordinate system and click on the **TeachPoint** page to add the saved point information.

NOTICE

If the eccentric end effector is mounted, please execute Step 2 - Step 3 under the set ToolIssue V1.0 (2020-06-03)User GuideCopyright © Yuejiang Technology Co., Ltd

coordinate system.

- **Step 2** Jog the robot to a right height (which is higher than the part) under the set User coordinate system and record the height of the point P2 which is called **z1**.
- Step 3 Jog the robot to the center of the part under the set User coordinate system and record the height of the point P3 which is called z0.
- **Step 4** Add P2, P3 and P4 points on the **TeachPoint** page under the basic coordinate system. P2=(0,0,z1,0), P3=(0,0,z0,0), P4=(0,0,z1,0)
- Step 5 Put a part on the conveyor which is in the vision search area and create the template on the vision software to extract the part features.

Please set the current template angle to $0\,^\circ\,$.

If you use the sensor to detect parts, please place the parts in the correct direction (The parts detected by the sensor on the conveyor have a fixed direction)

Step 6 (Optional) This step is executed only when the pickup angle is required. If there is no requirement, please skip this step.

1. Move the conveyor to a position where the part is in the pickup area, jog the robot to the center of this part, and set the R-axis to 0° under the basic coordinate system.

- Switch to the set User coordinate system and record the R-axis value which is called r1.
- 3. Adjust the R-axis to a right pose to pick up the part, and record the R-axis value which is called **r2**.

Therefore, the R-axis value \mathbf{r} of P2, P3 and P4 points is $\mathbf{r2} - \mathbf{r1}$.

- $r > 180^{\circ}, r = r 360^{\circ}$
- $r < -180^{\circ}, r = r + 360^{\circ}$
- $-180 \le \mathbf{r} \le 180^\circ$, **r** remains unchanged
 - 4. Modify the P2, P3 and P4 points on the **TeachPoint** page. P2=(0,0,z1,r), P3=(0,0,z0,r), P4=(0,0,z1,r)
- Step 7 Jog the robot to point P6 under the basic coordinate system, and click on the **TeachPoint** page to add the saved point information.
- Step 8 Jog the robot to point P5 under the basic coordinate system, and click on the TeachPoint page to add the saved point information.

Figure 3.23 Conveyor tracking process

- The motion commands used between SyncCnv(0) and StopSyncCnv() only support Move command
- The wait, DI and DO commands are supported between SyncCnv(0) and StopSyncCnv().

CnvVison(0)	// Activate co	onveyor
DO(1,0)	// Control the	air pump status by DO1 and DO2
DO(2,0)		
local flag	//Part flag	
Issue V1.0 (2020-06-03)	User Guide	Copyright © Yuejiang Technology Co., Ltd
	106	

|--|

local typeObject	/// Part type
local point = $\{0,0,0\}$	//Part coordinate (X,Y,R)
while true do	
Go(P1,"Speed=100 Accel=100 SYN	C=1") // Wait point
print("Test")	
while true do	
flag,typeObject,point = GetCn	vObject(0,0) //Check whether there is a part. If there is a part, exit this
loop	
if flag == true then	
break	
end	
Sleep(20)	
end	
SyncCnv(0)	//Synchronize the conveyor and start to track
Move(P2,"SpeedS=100 AccelS=100"	') // Tracking point
Move(P3,"SpeedS=100 AccelS=100'	') // Pickup point
Wait(100)	
DO(1,1)	// Active air pump and pick up part
DO(2,1)	
Wait(100)	
Move(P4,"SpeedS=100 AccelS=100	SYNC=1") // Lifting point
StopSyncCnv()	// Stop conveyor tracking
Sleep(20)	
Go(P5,"Speed=100 Accel=100")	// Point above the placing point
Go(P6,"Speed=100 Accel=100 SYN	C=1") // Placing point
Sleep(1000)	
DO(1,0)	// Close air pump
DO(2,0,"SYNC=1")	
Sleep(1000)	
Go(P5,"SpeedS=100 AccelS=100")	
end	

3.2 Palletizing

3.2.1 Overview

In carrying applications, some parts are regularly arranged with uniform spacing and teaching part positions one by one results in a high error and poor efficiency. Palletizing process can resolve these problems.

Issue V1.0 (2020-06-03)	User Guide	Copyright © Yuejiang Technology Co., Ltd
	107	

A full palletizing process includes pallet parameters setting and pallet programming. After you set the pallet parameters on DobotSCStdudio, the generated configuration file will be imported to the robot system automatically, then you can write a pallet program by calling pallet API based on site requirements.

3.2.2 Setting Pallet

Pallet parameter settings include basic parameter setting and path point setting. Basic parameter setting is to set pallet name, stack number, palletizing direction and stack spacing. Path points are the configured points on the assembly path or dismantling path.

- Transition point (point A): A point the robot must move to when assembling or dismantling stacks, which is fixed or varies with the pallet layer.
- Preparation point (point B): A point calculated by the target point and the set offset.
- Target point (point C): The first stack point.

Figure 3.24 and Figure 3.25 show the assembly path and dismantling path.

Figure 3.24 Assembly path

Figure 3.25 Dismantling path

	Issue V1.0 (2020-06-03)	User Guide	Copyright © Yuejiang Technology Co., Ltd
--	-------------------------	------------	--

Stack indicates parts or products to be carried. Pallet indicates an object which places the stacks. Assembling stack indicates that the robot places stacks to the pallet as the configured pallet type. Dismantling stack indicates that the robot takes out stacks from the pallet as the configured pallet type. Pallet type indicates the layout of all stacks placed on the pallet. In our robot system, only the matrix pallet is supported, on which the stacks are placed in regular intervals, as shown in Figure 3.26.

Figure 3.26 Matrix pallet

In this topic, we describe how to set pallet parameters.

Prerequisites

- The robot has been powered on.
- The suction cup or gripper kit has been mounted on the robot
- (Optional) The User coordinate system has been set on the pallet. When teaching positions, you can select the set User coordinate system based on site requirements.

Procedure

Step 1 Click Process>MatrixPallet.

The pallet page is displayed, as shown in Figure 3.27.

Issue V1.0 (2020-06-03)

1		Pallet			Base 1st Pallet	Transition Point	Ready Point	Options	
	Authority	Index	Name	User					
-	🔝 Config								
	🗆 🚍 BasicConfig				Name :				
	🗆 🌄 Reboot								
	🗆 🙏 GlobalCoordinate				Direction:	х->т->z			Ŧ
	🗆 🎯 PluginsInfo								
	🗆 컱 IOMonitor								
	🗆 🔳 Log								
	🗆 🔊 NetworkSetting					х	Y	7.	
	🗆 💻 Offline					**	*	5	
	🗆 💕 RobotParams								
	🗆 🟠 RobotSetting				Count:	0	0	0	÷
	🗆 🔊 VirtualRobot								
-	Process				Distance:	0.0000	0.0000	0.0000	^
	🗆 🇊 MatrixPallet								
	🗆 🎂 TeachPallet								
	🗆 📇 Tracking				Add	Poplace	Romovo	Samo	
	🗆 🎯 VisionCalibration				nuu	(Nebrace)	(Ivenil)ve	Save	

Figure 3.27 Pallet page

Step 2 Set the basic pallet parameters on the Base tab.

Table 3.5 shows the basic pallet parameter description.

Table 3.5	Basic pallet parameter description
-----------	------------------------------------

Parameter	Description
Name	Pallet name
Direction	Palletizing direction
	Value: X->Y->Z or Y->X->Z
	In this topic, we select X->Y->Z
Count	Number of stacks in X, Y, Z direction respectively
Distance	Stack interval in X, Y, Z direction respectively

Step 3 Jog the robot to the first stack position and click **Get Pose** on the **1st Pallet** tab, as shown in Figure 3.28.

UserCoord is the User coordinate system index, which needs to be consistent with the User coordinate system selected during teaching.

Pallet			Base 1st Pallet	Transition Point	Ready Point	Options	
Index	Name	User					
			The position	of the first p	allet.		
			UserCoord:	0			
			Х:	0.0000	Rx:	0.0000	* *
			Υ:	0.0000	Ry:	0.0000	*
			Ζ:	0.0000	Rz:	0.0000	*
			Ge	et Pose	Locat	ion	
[
			Add	Keplace	Kemove	Sav	e

Figure 3.28 Teach the first stack position

Step 4 Jog the robot to the transition point and click **Get Pose** on the **Transition Point** tab, as shown in Figure 3.29.

UserCoord is the User coordinate system index, which needs to be consistent with the User coordinate system selected during teaching.

If **Variation with layer height** is selected, the transition point is varied with the pallet layer. If not, it is the fixed point.

Pallet			Base 1st Pallet	Transition Point	Ready Point	Options
Index	Name	User	Safety transi the height of for each laye	tion points, if c each layer, the r are different.	checked to var preparation p	y with oints
			UserCoord: X: Y:	0	Rx: Ry:	0.0000
			Z: Variation with	0.0000)	Rz :	0.0000
			Add	Replace	Locat:	Save

Figure 3.29 Teach the transition point

Issue V1.0 (2020-06-03)	User Guide	Copyright © Yuejiang Technology Co., Ltd
15540 (110 (2020 00 00)	eber oulde	copyright o radjung rediniorogy con, 214

Step 5	Jog the robot to the position where is above the first stack, and click Get Pose on the
	Ready Point tab.
	UserCoord is the User coordinate system index, which needs to be consistent with the User coordinate system selected during teaching.
Step 6	Click Add to generate the configuration file and import to the robot system automatically.

3.2.3 Example

After setting the pallet parameters, you can call pallet API for programming. This topic takes stack assembly as an example to describe.

local MPpick = MatrixPallet(0, "IsUnstack=true Userframe=8")	// Define the pallet instance
Reset(MPpick)	// Initial the pallet instance
while true do	
MoveIn(MPpick,"velAB=90 velBC=50")	// Start to assemble
MoveOut(MPpick)	
result=IsDone(MPpick)	
if (result == true)	// Check whether stack assembly is
complete	
then	
print("EXIT")	
break	
end	
end	
Release(MPpick)	// Release pallet instance

Program 3.2 Stack assembly demo

4. Typical Applications

4.1 Modbus Application

A robot can communicate with external equipment by the Modbus protocol. Here, External equipment such as a PLC is set as the Modbus master, and the robot system is set as the salve.

This topic takes a PLC as an example to control the robot by reading and writing related registers. The typical connection is shown in Figure 4.1.

Figure 4.1 Typical connection

The IP address of the robot system must be in the same network segment of the external equipment without conflict. You can modify the IP address on the **Config> NetworkSetting** page; the default port is 502 and cannot be modified.

Figure 4.2 shows the program process and Program 4.1 shows the corresponding demo.

- The registers mentioned in Figure 4.2 are the robot system's registers. The corresponding registers of PLC are shown in 2.15.1 Modbus Register Description.
- This topic only describes the program demo of the robot system. The details on the program of PLC are not described in this topic.

Figure 4.2 Program process

Program 4.1 Slave program demo

local data = $\{1\}$		
Issue V1.0 (2020-06-03)	User Guide	Copyright © Yuejiang Technology Co., Ltd
	114	


```
local data2 = \{1\}
local coil = \{ \}
local RST = \{0\}
while true
do
      coil = GetCoils(1000,1)
     if coil[1] == 1 then
          Go(P1,"SYNC=1")
          Sleep(1000)
         SetCoils(1001, 1, data)
          while true do
                 Sleep(1000)
                 data2 = GetHoldRegs(1000,1)
                 if data2[1] == 666 then
                      Go(P2,"SYNC=1")
                      SetHoldRegs(1001,#data,data2,"U16")
                      Sleep(1000)
                      Go(P3,"SYNC=1")
                      SetCoils(1000, 1, RST)
                      SetCoils(1001, 1, RST)
                      SetHoldRegs(1000,1,RST,"U16")
                      \operatorname{coil} = \{0\}
                      data2 = \{0\}
                      break
                 end
            end
      end
end
```

4.2 I/O Application

4.2.1 Grabbing Bottle Application

This topic takes a six-axis robot as an example to describe how to grab bottles. The full process includes bottle transportation, bottle grabbing, box covering, and box transportation. The bottle and box transportation is completed by the conveyor and PLC. Bottle grabbing is completed by the robot. In this topic, we only describe how to grab, as shown in Figure 4.3.

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

Figure 4.3 Application scene

Table 4.1 lists the positions where the robot will move to.

Position	Description
P1	Safe position
P2	Bottle grabbing transition position
P3	Position closed to the bottle grabbing position
P4	Bottle grabbing position
P5, P7, P9, P11	Position above the placing position
P6, P8, P10, P12	Placing position
P13	Lid grabbing transition position
P14	Lid grabbing position
P15	Position above the lid grabbing position
P16	Position above the lid covering position
P17	Lid covering position

Table 4.1 Position descriptio	Table 4.1	Position description
-------------------------------	-----------	----------------------

Each time the robot performs a task, it sends a signal to the PLC to identify the task that needs to be completed so that the PLC can perform the related work. Table 4.2 lists the signal descriptions.

Digital signal	Description
Input	
DI2	Allow to grab a bottle

Issue V1.0 (2020-06-03)	User Guide	Copyright © Yuejiang Technology Co., Ltd

Digital signal	Description
DI3	Allow to grab a lid
Output	
DO7	Return to the safe position
DO8	Complete bottle grabbing
DO9	Cover a lid
DO17	Grab a bottle
D018, D019	Grab a lid

Figure 4.4 shows the detailed process.

Figure 4.4 Grabbing bottle process

• Program 4.2 Grabbing bottle demo

local bottleNum = 4

local readyPos=P1 --Safe position

```
Issue V1.0 (2020-06-03)
```

```
local bottleLoadingPos=P4 --Bottle grabbing position
local bottleUnloadingPosup ={P5, P7, P9, P11}
local bottleUnloadingPos ={P6, P8, P10, P12}
local boxLoadingPos = P14 -- Lid grabbing position
local boxUnloadingPos = P17 -- Lid covering position
while true do
     for bottleIndex = 1, bottleNum do
           Go(readyPos, "Speed=100 Accel=100")
           DOExecute(7,1)
           Wait(1000)
           while true do --Grab bottle signal
                Sleep(500)
               input = DI(2,1)
               if input == 1 then
                    break
                end
           end
           DOExecute(7,0)
           Wait(500)
           Go(P2,"Speed=100 Accel=100 SYNC=1") -- Bottle grabbing transition position
           Move(P3,"Speed=100 Accel=100 SYNC=1") -- Above the bottle
           Move(bottleLoadingPos," Speed=100 Accel=100 SYNC=1")
                                                                        --Grab bottle position
           DOExecute(17,1)
                                                  --Grabbing signal
           Wait(500)
           Move(P3,"Speed=100 Accel=100 SYNC=1") -- Above the bottle
           Go(P1,"Speed=100 Accel=100 SYNC=1") -- Transition position
           Go(bottleUnloadingPosup[bottleIndex],"Speed=100 Accel=100 SYNC=1") -- Above the bottle
           Move(bottleUnloadingPos[bottleIndex], "Speed=100 Accel=100 SYNC=1") --Bottle location
           DOExecute(17,0)
                                                  --Grabbing signal
           Wait(500)
           Move(bottleUnloadingPosup[bottleIndex],"Speed=100 Accel=100 SYNC=1")
           DOExecute(8,1) --Grab the bottle to complete the signal
           Wait(1000)
           DOExecute(8,0)
    end
    Go(readyPos,"Speed=100 Accel=100 SYNC=1") --Safe position
    while true do -- Grab the lid signal
     Issue V1.0 (2020-06-03)
                                               User Guide
                                                                  Copyright © Yuejiang Technology Co., Ltd
```



```
Sleep(1000)
   input = DI(3,1)
   if input == 1 then
        break
   end
end
Go(P13,"Speed=100 Accel=100 SYNC=1") --Transition position
Move(P15,"Speed=100 Accel=100 SYNC=1") --Grab the lid transition position
Move(boxLoadingPos," Speed=100 Accel=100 SYNC=1") --Grab the lid
DOExecute(18,1) --Grabbing signal
DOExecute(19,1) --Grabbing signal
Wait(500)
Move(P15,"Speed=100 Accel=100 SYNC=1") --Grab the lid transition position
Move(P16,"Speed=100 Accel=100 SYNC=1") --Cover the box and cover it transition position
Move(boxUnloadingPos,"Speed=10 Accel=10 SYNC=1") --Cover the box and cover it
DOExecute(18,0)
DOExecute(19,0)
Wait(500)
DOExecute(9,1)
Wait(500)
Move(P16,"Speed=100 Accel=100 SYNC=1") --Cover the box and cover it transition position
Go(readyPos,"Speed=100 Accel=100 SYNC=1") --Safe position
DOExecute(9,0)
Wait(500)
```

end