

Shenzhen Yuejiang Technology Co., Ltd

DobotSCStudio

User Guide

User Guide

Issue: V1.0

Date: 2020-06-03

 DobotSCStudio User Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 i

Copyright © Shenzhen Yuejiang Technology Co., Ltd 2020. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means

without the prior written consent of Yuejiang Technology Co., Ltd

Disclaimer

To the maximum extent permitted by applicable law, the products described (including its

hardware, software, and firmware, etc.) in this document are provided AS IS, which may have flaws,

errors or faults. Yuejiang makes no warranties of any kind, express or implied, including but not

limited to, merchantability, satisfaction of quality, fitness for a particular purpose and non-

infringement of third party rights. In no event will Yuejiang be liable for any special, incidental,

consequential or indirect damages resulting from the use of our products and documents.

Before using our product, please thoroughly read and understand the contents of this document

and related technical documents that are published online, to ensure that the robot is used on the

premise of fully understanding the robot and related knowledge. Please use this document with

technical guidance from professionals. Even if follow this document or any other related

instructions, Damages or losses will be happening in the using process, Dobot shall not be

considered as a guarantee regarding all security information contained in this document.

The user has the responsibility to make sure following the relevant practical laws and

regulations of the country, in order that there is no significant danger in the use of the robot.

Shenzhen Yuejiang Technology Co., Ltd

Address: Address: Floor 9-10, Building 2, Chongwen Garden, Nanshan iPark, Liuxian Blvd,

Nanshan District, Shenzhen, Guangdong Province, China

Website: www.dobot.cc

www.dobot.cc

 DobotSCStudio User Guide Preface

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 ii

Preface

Purpose

This manual introduces the functions and usage of the robot control software DobotSCStudio,

which is convenient for users to understand and use robot.

Intended Audience

This document is intended for:

 Customer

 Sales Engineer

 Installation and Commissioning Engineer

 Technical Support Engineer

Change History

Date Change Description

2020/06/03 The first release

Symbol Conventions

The symbols that may be founded in this document are defined as follows.

Symbol Description

DANGER

Indicates a hazard with a high level of risk which, if not

avoided, could result in death or serious injury

WARNING

Indicates a hazard with a medium level or low level of

risk which, if not avoided, could result in minor or

moderate injury, robot damage

NOTICE

Indicates a potentially hazardous situation which, if not

avoided, can result in equipment damage, data loss, or

unanticipated result

NOTE Provides additional information to emphasize or

supplement important points in the main text

 DobotSCStudio User Guide Contents

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 iii

Contents

 Function Description ... 1

 Overview ... 1

 Main Interface Description .. 1

 Settings.. 2

 Setting Motion Parameter .. 2

 Setting User Coordinate System .. 6

 Setting Tool Coordinate System .. 9

 Homing .. 14

 Calibration ... 20

 VirtualRobot .. 22

 Log... 22

 Language ... 23

 Network Service .. 23

 Monitor ... 25

 I/O Monitor .. 25

 Remote Control ... 26

 Remote I/O .. 26

 Remote Modbus... 28

 Programming .. 29

 Project Description .. 29

 Programming Panel Description .. 30

 Programming Description.. 31

 Enabling .. 41

 Setting Global Velocity Rate ... 41

 Alarm Description ... 42

 Program Language .. 44

 Arithmetic Operators .. 44

 Relational Operator ... 44

 Logical Operators.. 44

 General Keywords .. 45

 General Symbol .. 45

 Processing Control Commands ... 45

 Global Variable ... 45

 Motion Commands.. 46

 Motion Parameter Commands .. 55

 Input/output Commands .. 58

 Program Managing Commands .. 59

 Pose Getting Command .. 62

 TCP ... 63

 UDP .. 67

 Modbus ... 71

 Modbus Register Description .. 71

 DobotSCStudio User Guide Contents

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 iv

 Command Description ... 72

 ECP ... 75

 Process Command ... 77

 Conveyor Tracking Command... 77

 Pallet Commands ... 79

 Process Guide ... 85

 Conveyor Tracking.. 85

 Overview ... 85

 Building Environment ... 85

 Calibrating Conveyor .. 87

 Configuring Conveyor ... 91

 Example ... 103

 Palletizing ... 107

 Overview ... 107

 Setting Pallet .. 108

 Example ... 112

 Typical Applications .. 113

 Modbus Application .. 113

 I/O Application ... 115

 Grabbing Bottle Application .. 115

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 1

 Function Description

 Overview

A SC series controller is equipped with DobotSCStudio, providing secondary development and

various kinematic algorithms for mechanical structures, which are suitable for various applications.

 Main Interface Description

Figure 1.1 shows the main interface of DobotSCStudio, Table 1.1 lists the interface description.

Figure 1.1 Main interface

Table 1.1 Interface description

No. Description

1 Project

You can build or import a project, and debug or run it

2 Jog

Jog the robot in different coordinate systems. This

function is valid only when DobotSCStudio is set to the

manual mode

Jog the robot in the Joint coordinate system: From top

to bottom, jog J1, J2,…, and J6

Jog the robot in the Cartesian coordinate system: From

top to bottom, jog the X, Y, Z, R(A-axis), B, and C

3 System

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 2

No. Description

You can set system configurations. Such as

NetworkSetting, RobotParams, Coordinate, Process

4 You can click the icon to change manual mode and auto

mode.

 : In manual mode, indicate the motor status

(enabled or disabled)

 : In auto mode, indicate that you can click this

button to control the motor

5 In manual mode, indicate the motor status

(enabled or disabled)

 In auto mode, indicate that you can click this

button to control the motor

6 Check robot alarm

When an alarm is triggered, this icon will turn red

You can check the alarm details on the operation panel

and clear it in the manual mode

7 Set global velocity rate

8 Select user mode

 Watcher: check the system status, I/O status,

robot pose, and alarms

 Operator: Operate a robot based on the existing

scripts without programming

 Programmer: Program, Teach

 Manager: Set parameters

Please select user mode based on site requirements

9 Emergency stop switch

Press and hold it in an emergency, the drive power

supply of robot motors will be powered off for

emergency braking

10 You can browse user guide and application case on

welcome page

 Settings

Before teaching or running robot programs, a series of settings are required, including motion

parameter setting, language selecting, user mode selecting and process setting.

 Setting Motion Parameter

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 3

You can set the velocity, acceleration or other parameters in different coordinate systems when

jogging a robot or running robot programs. After setting the parameters, please click Save. Click

>Config>RobotParams to enter RobotParams interface.

 Teach Joint Parameter: Set the maximum velocity and acceleration in the Joint coordinate

system when jogging a robot. The jogging parameters of a 6-axis robot in the Joint

coordinate system are as shown in Figure 1.2.

Figure 1.2 Jogging parameters in the Joint coordinate system

NOTE

If the robot is a SCARA type, the related parameters of J5 and J6 are invalid.

 Set the maximum velocity and acceleration in the Cartesian coordinate system when

jogging a robot. The jogging parameters of a 6-axis robot in the Cartesian coordinate

system are as shown in Figure 1.3.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 4

Figure 1.3 Jogging parameters in the Cartesian coordinate system

NOTE

If the robot is a SCARA type, Rx indicates the R-axis. The related parameters of Ry and

Rz are invalid.

 Playback Joint Parameter: Set the maximum velocity, acceleration, and jerk in the Joint

coordinate system when running robot programs. The playback parameters of a 6-axis

robot in the Joint coordinate system are as shown in Figure 1.4.

Figure 1.4 Playback parameters in the Joint coordinate system

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 5

NOTE

If the robot is a SCARA type, the related parameters of J5 and J6 are invalid.

 Playback Coordinate Parameter: Set the maximum velocity, acceleration and jerk in the

Cartesian coordinate system when running robot programs. The playback parameters of a

6-axis robot in the Cartesian coordinate system are as shown in Figure 1.5.

Figure 1.5 Playback parameters in the Cartesian coordinate system

NOTE

If the robot is a SCARA type, RxRyRz indicates the R-axis.

 Playback Arch Parameter: If the motion mode is Jump when running robot programs,

you need to set StartHeight, EndHeight, and zLimit.

You can set 10 sets of Jump parameters. Please set and select any set of parameters for

calling Jump command during programming, as shown in Figure 1.6.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 6

Figure 1.6 Jump parameters

 Setting User Coordinate System

When the position of workpiece is changed or a robot program needs to be reused in multiple

processing systems of the same type, you can create coordinate systems on the workpiece to simplify

programming. There are totally 10 groups of User coordinate systems, of which the first one is

defined as the Base coordinate system by default and cannot be changed. And the others can be

customized by users.

NOTICE

When creating a User coordinate system, please make sure that the reference coordinate

system is the Base coordinate system. Namely, the User coordinate system icon should

be when creating a User coordinate system.

1.2.2.1 Setting User Coordinate System of SCARA Robot

User coordinate system of a SCARA robot is created by two-point calibration method: Move

the robot to two points A(x1, y1, z1) and B(x2, y2, z2). Point A is defined as the origin and the line

from point A to point B is defined as the positive direction of X-axis. And then the Y-axis and Z-

axis can be defined based on the right-handed rule, as shown in Figure 1.7.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 7

Figure 1.7 Two-point calibration

Take the establishment of User 1 coordinate system as an example.

Prerequisites

 The robot has been powered on.

 The DobotSCStudio has been in the manual mode.

Procedure

The Coordinate User page is displayed, as shown in Figure 1.8.

Figure 1.8 User coordinate system page

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 8

You can use the User 1 coordinate system for teaching and programming.

1.2.2.2 Setting User Coordinate System of 6-axis Robot

User coordinate system of a 6-axis robot is created by three-point calibration method: Move

the robot to three points A(x1, y1, z1), B(x2, y2, z2), and C(x3, y3, z3). Point A is defined as the

origin and the line from point A to Point B is defined as the positive direction of X-axis. The line

that point C is perpendicular to X-axis is defined as the position direction of Y-axis. And then the

Z-axis can be defined based on the right-handed rule, as shown in Figure 1.9.

Figure 1.9 Three-point calibration

Take the establishment of User 1 coordinate system as an example.

Prerequisites

 The robot has been powered on.

 The DobotSCStudio has been in the manual mode.

Procedure

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 9

Figure 1.10 User coordinate system page

NOTE

Rx, Ry, Rz are the orientation data, which are designated by rotating the tool center point

(TCP) around the X, Y, Z axes under the selected User coordinate system.

You can use the User 1 coordinate system for teaching and programming.

 Setting Tool Coordinate System

When an end effector such as welding gun, gripper is mounted on the robot, the Tool coordinate

system is required for programming and operating a robot. For example, you can use multiple

grippers to carry multiple workpieces simultaneously to improve the efficiency by setting each

gripper to a Tool coordinate system.

There are totally 10 groups of Tool coordinate systems. Tool 0 coordinate system is the

predefined Tool coordinate system which is located at the robot flange and cannot be changed.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 10

NOTICE

When creating a Tool coordinate system, please make sure that the reference coordinate

system is the predefined Tool coordinate system. Namely, the Tool coordinate system

icon should be when creating a Tool coordinate system.

1.2.3.1 Setting Tool Coordinate System of SCARA Robot

Tool coordinate system of SCARA robot is created by two-point calibration method: After an

end effector is mounted, please adjust the direction of this end effector to make the TCP (Tool Center

Point) align with the same point (reference point) in two different directions, for obtaining the

position offset to generate a Tool coordinate system, as shown in Figure 1.11.

Figure 1.11 Two-point calibration method

Take the establishment of Tool 1 coordinate system as an example.

Prerequisites

 The robot has been powered on.

 The DobotSCStudio has been in the manual mode.

Procedure

The Coordinate Tool page is displayed, as shown in Figure 1.12.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 11

Figure 1.12 Tool coordinate page

Make the TCP align with the fixed point and then jog the R-axis. If the robot can rotate around

this point, it indicates that the Tool coordinate system is created successfully.

1.2.3.2 Setting Tool Coordinate System of 6-axis Robot

Tool coordinate system of a 6-axis robot is created by three-point calibration method (TCP

+ZX): After the end effector is mounted, please adjust the direction of the end effector, to make TCP

(Tool Center Point) align with the same point (reference point) in three different directions, for

obtaining the position offset of the end effector, and then jog the robot to the other three points (A,

B, C) for obtaining the angle offset, as shown in Figure 1.13.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 12

Figure 1.13 Three points calibration method (TCP+ZX)

Take the establishment of Tool 1 coordinate system as an example.

Prerequisites

 The robot has been powered on.

 The DobotSCStudio has been in the manual mode.

Procedure

The Coordinate Tool page is displayed, as shown in Figure 1.14.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 13

Figure 1.14 Tool Coordinate page

NOTE

Rx, Ry, Rz are the orientation data, which are designated by rotating the tool center point

(TCP) around the X, Y, Z axes under the selected Tool coordinate system.

This step defines the Z-axis.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 14

This step defines the X-axis, and the Y-axis can be defined based on the right-handed

rule.

 Homing

After some parts (motors, reduction gear units) of the robot have been replaced or the robot has

been hit, the origin of the robot will be changed. You need to reset the origin.

1.2.4.1 Homing of SCARA Robot

Prerequisites

The robot has been powered on.

Procedure

Figure 1.15 Original position

NOTE

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 15

There is a keyway on each joint. When moving the robot, the position where the keyways

of the adjacent joints are aligned is called the original position of the corresponding joint,

as shown in Figure 1.16.

Figure 1.16 Keyway position

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 16

Figure 1.17 Mechanical stop

NOTE

Mechanical stop is used to prevent the robot from running out of the workspace, to avoid

damage to the robot and operators.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 17

Figure 1.18 Homing page

If the homing procedure is successful, Home succeeded! is displayed on the

message window.

During the homing procedure, the robot will not move and will set the current

position as the homing point. The homing position is shown in Figure 1.19.

Figure 1.19 Homing position

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 18

1.2.4.2 Homing of 6-axis Robot

Prerequisites

The robot has been powered on.

Procedure

Figure 1.20 Original position

 NOTE

There is a keyway on each joint. When moving the robot, the position where the keyways

of the adjacent joints are aligned is called the original position of the corresponding joint,

as shown in Figure 1.21.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 19

Figure 1.21 Keyway position

The homing page is displayed, as shown in Figure 1.22.

Figure 1.22 Homing page

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 20

If the homing procedure is successful, Home succeeded! is displayed on the message

window.

During the homing procedure, the robot will not move and will set the current

position as the homing point. The homing position is shown in Figure 1.23.

Figure 1.23 Homing position

 Calibration

Before being shipped out, the robot has been calibrated. You need to re-calibrate it if higher

absolute precision is required in real applications.

For SCARA robot: Generally, the robot moves to the same point with different arm

orientations, the J2 coordinates are axisymmetric. If not, absolute precision will be decreased. It is

necessary to make the J2 coordinates axisymmetric by compensating the joint angle of J2 to improve

absolute precision.

This topic takes a SCARA robot as an example to describe how to calibrate.

Prerequisites

 The robot has been powered on.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 21

 The calibration kit has been mounted.

Procedure

The calibration page is displayed, as shown in Figure 1.24.

Figure 1.24 Calibration page

The following steps must be performed in the enabled status.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 22

Figure 1.25 Calibration

If the calibration is successful, The Calibration Succeeded! is displayed on the

message window.

 VirtualRobot

When user jogs or runs robot, the virtual simulation interface can be used to view the robot

movement in real time.

 Log

You can understand the historical operation of the robot by viewing the log. The log can be

screened according to three types of logs: user operation, control error and servo error. Click Reset

to clear the log.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 23

Figure 1.26 Log

 Language

Click Config> BasicConfig> Language enter the language switching interface, you can

switch to Chinese or English.

 Network Service

The robot system can be communicated with external equipment by the Ethernet interface

which supports TCP, UDP and Modbus protocols. The default IP address is 192.16.5.1. In real

applications, if the TCP or UDP protocol is used, the robot system can be a client or a server based

on site requirements; if the Modbus protocol is used, the robot system only can be the Modbus slave,

and the external equipment is the master.

You can modify the IP address on the >Config> NetworkSetting page, as shown in Figure

1.27. The IP address of the robot system must be in the same network segment of the external

equipment without conflict.

Figure 1.27 IP address setting

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 24

Figure 1.28 and Figure 1.29 show the connections between the robot system and external

equipment.

 If the robot system connects to the external equipment directly or with a switchboard,

please select Manual IP Address and modify IP Address, subnet mask, default

gateway, and then click Save.

 If the robot system connects to the external equipment with a router, please select Auto

IP Address to assign IP address automatically, and then click Save.

NOTICE

Please DO NOT insert the network cable into the WAN interface when using a router for

the connection.

Figure 1.28 Connect robot system to external equipment directly

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 25

Figure 1.29 Connect robot system to external equipment with router or switchboard

 Monitor

 I/O Monitor

>Config>IOMonitor,

Figure 1.30 I/O monitor page

There are two features: Output and monitor

 Output: Set the output status in the manual mode.

 Monitor: Check the status of the input and output. In the auto mode, the status of the

output and input cannot be modified.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 26

 Remote Control

External equipment can send commands to a robot by different remote control modes, such as

remote I/O mode and remote Modbus mode. The default mode is Teaching mode when the robot is

shipped out. When you need to set the remote mode, please set it on DobotSCStudio with the robot

motor in the disabled state.

NOTICE

 Robot rebooting is not required when switching the remote mode.

 The emergency stop switch on the hardware is always available no matter what

mode the robot system is in.

 Please DO NOT switch the remote mode when the robot is running in the current

remote mode. You need to exit the current mode and then switch to the other remote

mode. Namely, please stop the robot running and then switch the mode.

 If the robot motor is in the enabled status, the remote control cannot be used.

Otherwise, an alarm will be triggered. Please activate the remote control in the

disabled status.

 Remote I/O

When the remote mode is I/O mode, external equipment can control a robot in this mode. The

specific I/O interface descriptions are shown in Table 1.2.

Table 1.2 Specific I/O interface description

I/O interface Description

Input (For external control)

DI 11 Clear alarm

DI 12 Continue to run

DI 13 Pause running in the I/O mode

DI 14 Stop running and exit the I/O mode

DI 15 Start to run in the I/O mode

DI 16 Emergency stop and exit the I/O mode

Output (For displaying the status)

DO 13 Ready status

DO 14 Pause status

DO 15 Alarm status

DO 16 Running status

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 27

NOTICE

All input signals are rising-edge triggered.

Prerequisites

 The project to be running in the remote mode has been prepared.

 The external equipment has been connected to the robot system by the I/O interface. The

specific I/O interface description is shown in Table 1.2.

 The robot has been powered on.

NOTE

The details on how to connect external equipment and use it are not described in this

topic.

Procedure

The remote control page is displayed, as shown in Figure 1.31.

Figure 1.31 Remote control page

The Save success, now remote control mode is IO page is displayed.

Right now, only the emergency stop button is available.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 28

The robot will move as the selected offline project. If the stop signal is triggered, the

remote I/O mode will be invalid.

 Remote Modbus

When the remote mode is Modbus mode, external equipment can control a robot in this mode.

For details about Modbus registers, please see 2.15.1Modbus Register Description. The specific

Modbus register descriptions are shown in Table 1.3.

Table 1.3 Specific Modbus register description

Register address (Take a PLC

as an example)

Register address (Robot

system)

Description

Coil register

00001 0 Start running in the remote Modbus

mode

00002 1 Pause running in the remote

Modbus mode

00003 2 Continue to run

00004 3 Stop to run and exit the remote

Modbus mode

00005 4 Emergency stop and exit the remote

Modbus mode

00006 5 Clear alarm

Discrete input register

10001 0 Auto-exit

10002 1 Ready status

10003 2 Pause status

10004 3 Running status

10005 4 Alarm status

Prerequisites

 The project to be running in the remote mode has been prepared.

 The robot has been connected to the external equipment with the Ethernet interface. You

can connect them directly or via a router, please select based on site requirements.

The IP address of the robot system must be in the same network segment of the external

equipment without conflict. You can modify the IP address on the Config>

NetworkSetting page; the default port is 502 and cannot be modified.

 The robot has been powered on.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 29

NOTE

The details on how to connect external equipment and use it are not described in this

topic.

Procedure

Figure 1.32 Remote control page

The Save success, now remote control mode is Modbus page is displayed.

Right now, only the emergency stop button is available.

The robot will move as the selected offline project. If the stop signal is triggered, the

remote Modbus mode will be invalid.

 Programming

 Project Description

The robot program is managed in project form, including teaching points list, global variables,

and program files. Figure 1.33 shows the project structure.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 30

Figure 1.33 Project structure

 Programming Interface Description

When programming a robot, please switch DobotSCStudio to the manual mode. Figure 1.34

shows the programming panel and Table 1.4 lists its description.

Figure 1.34 Programming panel

Table 1.4 Programming panel description

No. Description

1 Project files

 TeachPoint: Teach points. For details, please see

1.5.3.2 Teaching points

 Global: Define and initialize global variables or

functions

 Src0~Src4: Multithreaded files. The number of

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 31

No. Description

threads is related to CPU that is set when creating

a project. Up to 5 threads can be executed

simultaneously

2 Common buttons. For details, please see Table 1.5

3 Programming area

4 Running button, for details, please see Table 1.6

5 Debug result

Table 1.5 lists the common button description.

Table 1.5 Common button description

Icon Description

Save the project

Cancel

Redo

Copy the selected codes

Cut the selected codes

Paste the selected codes

Motion command libraries. For details, please see 2

Program Language

Code comment

Common operation instructions and process control

instructions, for details, please see 2 Program

Language

 Programming Description

Take a SCARA robot as an example to describe how to program. Figure 1.35 shows the

programming process.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 32

Figure 1.35 Programming process

1.5.3.1 Creating Project

Prerequisites

 The robot has been powered on.

 DobotSCStudio has been in the manual mode.

Procedure

The programming page is displayed, as shown in Figure 1.36.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 33

Figure 1.36 Programming page

Figure 1.37 Create a project

The maximum number of threads is 5.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 34

Figure 1.38 Create a project

If you want to reuse a taught positions list from an existing project, please right-click Point and

click import points file, as shown in Figure 1.39.

Figure 1.39 Import the existing teaching points list

1.5.3.2 Teaching points

Prerequisites

 The project has been created or imported

 DobotSCStudio has been in the manual mode

Procedure

After creating a project, please teach positions on the TeachPoint page for calling commands

when programming a robot. If the existing taught positions list has been imported, this operation

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 35

can be skipped.

The teaching point information is displayed on the TeachPoint page, as shown in

Figure 1.40.

Arm is the arm orientation. Tool is the Tool coordinate system and User is the User

coordinate system.

Figure 1.40 Teaching points list of SCARA robot

Table 1.6 Button description

Button Description

Add a point

Delete a point

Cover a point. Select a teaching point, after jogging the robot to a point, click the icon

to cover the selected teaching point

Run to a point, select a point, click the button to run the robot to this point

Save teaching point

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 36

Button Description

Previous page

Next page

 You can select a taught position and double-click the parameters on the line to modify the

relevant information, as shown in Figure 1.41.

Figure 1.41 Modify the teaching point information

 Also, you can select a taught position and click to cover the current taught position.

NOTE

If the robot is a 6-axis type, the teach point page is as shown in Figure 1.42. R, D, N, Cfg

indicate the arm parameters.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 37

Figure 1.42 TeachPoint page

1.5.3.3 Writing a Program

Prerequisites

 The project has been created or imported.

 The points have been taught.

Procedure

In the robot system, we have encapsulated common commands for programming with Lua

language. For details, please see 2 Program Language.

Supposing that the P1 and P2 points have been taught on the TeachPoint page. We call Go

command on the Src0 Page, to make the robot move between point P1 and point P2 circularly, as

shown in Figure 1.43.

Figure 1.43 Lua program

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 38

 Click > Move.

The motion commands list is displayed, as shown in Figure 1.44.

Figure 1.44 Motion commands list

 Select a command from the motion commands list and click it on the edit

window of the Src0 page.

The parameter setting page of this command is displayed. Take the Go

command as an example. You can set the point where the robot will move to in

the Go mode.

 Select P1 on the First Parameter section of the Go command setting page, and

then click Insert. Namely, the robot moves to P1 point in the Go mode.

Figure 1.45 Call the Go command

If you want to set the motion speed, arm orientation, you can set them on the

Second Parameter section, as shown in Figure 1.46.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 39

Figure 1.46 Set the optional parameters

 Wrap and execute 2 again.

 Select P2 on the First Parameter section of the Go command setting page, and

then click Insert. Namely, the robot moves to P2 point in the Go mode.

NOTE

If you want to debug a robot program step by step, please set the breakpoint when writing

the program. Click the right line to set, as shown in Figure 1.47.

Figure 1.47 Set breakpoint

Now, a simple program has been written.

1.5.3.4 Debugging Program

Now, the programming page is as shown in Figure 1.48.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 40

Figure 1.48 Programming page

Table 1.7 lists the description of the program-running buttons which are shown in Figure 1.48

Table 1.7 Program-running button description

Icon Description

Build program

Check if the code is correct

Once-click run

After clicking this button, turns into and the program starts running

If you need to pause the running program, please click

Start to run a program

Click once: Start to debug a program, turns into

Click twice: Start to run a program, turns into

If you need to pause the running program, please click

Stop the running program

Step into

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 41

Icon Description

This button is valid only if turns into

Monitor

The debugging process can be monitored in real time while debugging the program

 If you has been set a breakpoint, the program will be run to the previous line of the

breakpoint and then be stopped. If the program need to be run again, please click

and then click .

 If you want to run a program step by step, please click . After turns into

, please click .

 Enabling

 Enable the motor in the manual mode: Click in manual mode. When the icon

 turns into , you can jog the robot bnormally.

 Enable the motor in the auto mode: Click in auto mode. When the icon

turns into , the robot arm be controlled by running the program.

 Setting Global Velocity Rate

Please click and then click buttons to increase or decrease the global velocity ratio by

1%, 5% or 10% on the operation panel, or drag the slider directly to set the global velocity, as

shown in Figure 1.49.

Figure 1.49 Modify the global velocity rate

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 42

When doing jogging or playback, the method calculating the velocity and acceleration for each

axis (in Joint or Cartesian coordinate system) is shown as follows.

 Actual jogging velocity = the maximum jogging velocity * global velocity rate

 Actual jogging acceleration = the maximum jogging acceleration* global velocity rate

 Actual playback velocity = the maximum playback velocity * global velocity rate * the

set velocity rate in the velocity function

 Actual playback acceleration = the maximum playback acceleration* global velocity rate

* the set acceleration rate in the acceleration function

 Actual playback jerk = the maximum playback jerk * global velocity rate * the set

acceleration rate in the jerk function

 NOTE

 The maximum velocity, acceleration, or jerk can be set on the Settings page. For

details, please see 1.2.1 Setting Motion Parameter.

 The rates (velocity rate, acceleration rate, or jerk rate) can be set in the related speed

functions. For details, please see 2.9 Motion Parameter Commands.

 Alarm Description

If teaching point is incorrect, for example, a robot moves to where a point is at a limited position

or a singular point, an alarm will be triggered.

If an alarm is triggered when running a robot, the alarm icon on the DobotSCStudio

turns into . You can check the alarm information on the Alarm page, as shown in Figure

1.50.

Please clear the alarm as follows:

 If a limitation alarm is triggered, please jog the limited joint axis towards the opposite

direction in the manual mode to clear the alarm.

 If other alarms are triggered, please click in the manual mode on the alarm page to

clear the alarm. If the alarm cannot be cleared, please reboot the robot.

 DobotSCStudio User Guide 1 Function Description

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 43

Figure 1.50 Alarm page

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 44

 Program Language

SC series controller encapsulates the robot dedicated API commands for programming with

Lua language. This section describes commonly used commands for reference.

 Arithmetic Operators

Table 2.1 Arithmetic operator

Command Description

+ Addition

- Subtraction

* Multiplication

/ Floating point division

// Floor division

% Remainder

^ Exponentiation

& And operator

| OR operator

~ XOR operator

<< Left shift operator

>> Right shift operator

 Relational Operator

Table 2.2 Relational Operator

Command Description

== Equal

~= Not equal

<= Equal or less than

>= Equal or greater than

< Less than

> Greater than

 Logical Operators

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 45

Table 2.3 Logical operator

Command Description

or Logical OR operator

not Logical NOT operator

and Logical AND operator

 General Keywords

Table 2.4 General keyword

Command Description

break Break out of a loop

local Define a local variable, which is available in the current

script

nil Null

return Return a value

enter Line feed

 General Symbol

Table 2.5 General symbol

Command Description

Get the length of the array table

 Processing Control Commands

Table 2.6 Processing control command

Command Description

if…then…else…elseif…end Conditional instruction (if)

while…do…end Loop instruction (while)

for…do…end Loop instruction (for)

repeat… until() Loop instruction (repeat)

 Global Variable

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 46

The robot global variables can be defined in the global.lua file, including global functions,

global points, and global variables.

 Global function:

function exam()

print("This is an example")

end

 Global point:

 SCARA robot: Define a Cartesian coordinate point, of which the arm orientation is

right handy orientation, the User and Tool coordinate systems are both default

coordinate systems.

P = {armOrientation = "right" , coordinate = {400,0,0,0}, tool = 0, user = 0}

 Six-axis robot: Define a joint coordinate point, of which R sets to 1, D sets to -1, N

sets to 0, Cfg sets to 1, the User and Tool coordinate systems are both default

coordinate systems.

P = {armOrientation = {1, 1, -1, 1}, joint = {20,10,22,2.14,0.87,3.85}, tool = 0, user = 0}

 Global variable

flag = 0

 Motion Commands

Table 2.7 Motion command

Command Description

Go Move from the current position to a target position in a

point-to-point mode under the Cartesian coordinate

system

MoveJ Move from the current position to a target position in a

point-to-point motion under the Joint coordinate

system

Move Move from the current position to a target position in a

straight line under the Cartesian coordinate system

Arc3 Move from the current position to a target position in

an arc interpolated mode under the Cartesian

coordinate system

Jump If the robot is a SCARA type, the robot moves

from the current position to a target position in

the Go mode. The trajectory looks like a door

 If the robot is a six-robot type, the robot moves

from the current position to a target position in

the Move mode. The trajectory looks like a door

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 47

Command Description

Circle3 Move from the current position to a target position in a

circular interpolated mode under the Cartesian

coordinate system

RP Set the X, Y, Z axes offset under the Cartesian

coordinate system to return a new Cartesian coordinate

point

RJ Set the joint offset under the Joint coordinate system to

return a new joint coordinate point

MoveR Move from the current position to the offset position in

a straight line under the Cartesian coordinate system

GoR Move from the current position to the offset position in

a point-to-point mode under the Cartesian coordinate

system

MoveJR Move from the current position to the offset position in

a point-to-point motion under the Joint coordinate

system

NOTICE

Optional parameters for each motion command can be set individually

Table 2.8 Go command

Function Go(P,”ARM=Left User=1 Tool=2 CP=1 Speed=50 Accel=20 SYNC=1”)

Description Move from the current position to a target position in a point-to-point mode under the Cartesian

coordinate system

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 48

Parameter Required parameter: P: Indicate target point, which is user-defined or obtained from the

TeachPoint page. Only Cartesian coordinate points are supported

Optional parameter:

 ARM: Arm orientation: If the robot is a SCARA type, please set to left or right. If the robot

is a 6-axis type, this parameter is invalid

 User: Indicate User coordinate system. Value range: 0 - 9

 Tool: Indicate Tool coordinate system. Value range: 0-9

 CP: Whether to set continuous path function. Value range: 0- 100

 Speed: Velocity rate. Value range: 1 - 100

 Accel: Acceleration rate. Value range: 1 -100

 SYNC: Synchronization flag. Value range: 0 or 1. If SYNC is 0, it indicates asynchronous

execution, this command has a return immediately after calling it, regardless of the

command process. If SYNC is 1, it indicates synchronous execution. After calling this

command, it will not return until it is executed completely

Example 1. The robot moves to point P1 as the default setting

Go(P1)

2. The SCARA robot moves to point P1 as the righty hand orientation with 50% velocity rate

and 50% acceleration rate

Go(P1,” ARM=Right Speed=50 Accel=50”)

3. Define a Cartesian coordinate point P1 and the SCARA robot moves to this point as the

righty hand orientation with 50% velocity rate and 50% acceleration rate

local P1 = {armOrientation = "right" ,coordinate={20,15,52,0}}

Go(P1)

Table 2.9 MoveJ command

Function MoveJ(P,” CP=1 Speed=50 Accel=20 SYNC=1”)

Description Move from the current position to a target position in a point-to-point motion under the Joint

coordinate system

Parameter Required parameter: P: Indicate the joint angle of the target point, which cannot be obtained from

the TeachPoint page. You need to define the joint coordinate point before calling this command

Optional parameter:

 CP: Whether to set continuous path function. Value range: 0 - 100

 Speed: Velocity rate. Value range: 1 - 100

 Accel: Acceleration rate. Value range: 1 - 100

 SYNC: Synchronization flag. Value range: 0 or 1. If SYNC is 0, it indicates asynchronous

execution, this command has a return immediately after calling it, regardless of the

command process. If SYNC is 1, it indicates synchronous execution. After calling this

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 49

command, it will not return until it is executed completely

Example local P = {joint={0,-0.0674194,0,0}}

MoveJ(P)

Define a joint coordinate point P and the SCARA robot moves to this point as the default setting

Table 2.10 Move command

Function Move(P,”ARM=Left User=1 Tool=2 CP=1 SpeedS=50 AccelS=20 SYNC=1”)

Description Move from the current position to a target position in a straight line under the Cartesian coordinate

system

Parameter Required parameter: P: Indicate the target point, which is user-defined or obtained from the

TeachPoint page. Only Cartesian coordinate points are supported

Optional parameter:

 ARM: Arm orientation: If the robot is a SCARA type, please set to left or right. If the robot

is a 6-axis type, this parameter is invalid

 User: Indicate User coordinate system. Value range: 0 - 9

 Tool: Indicate Tool coordinate system. Value range: 0 - 9

 CP: Whether to set continuous path function. Value range: 0 - 100

 SpeedS: Velocity rate. Value range: 1 - 100

 AccelS: Acceleration rate. Value range: 1 - 100

 SYNC: Synchronization flag. Value range: 0 or 1. If SYNC is 0, it indicates asynchronous

execution, this command has a return immediately after calling it, regardless of the

command process. If SYNC is 1, it indicates synchronous execution. After calling this

command, it will not return until it is executed completely

Example 1. The robot moves to point P1 as the default setting

Move(P1)

2. The SCARA robot moves to point P1 as the lefty hand orientation with 50% velocity rate

and 50% acceleration rate

Move(P1,” ARM=Left SpeedS=50 AccelS=20”)

3. Define a Cartesian coordinate point P1 and the SCARA robot moves to this point as the

default setting

local P1 = {coordinate={20,15,52,0}}

Move(P1)

Table 2.11 Arc3 command

Function Arc3(P1,P2, ”ARM=Left User=1 Tool=2 CP=1 SpeedS=50 AccelS=20 SYNC=1”)

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 50

Description Move from the current position to a target position in an arc interpolated mode under the Cartesian

coordinate system

This command needs to combine with other motion commands, to obtain the starting point of an

arc trajectory

Parameter Required parameter:

 P1: Middle point, which is user-defined or obtained from the TeachPoint page. Only

Cartesian coordinate points are supported

 P2: End point, which is user-defined or obtained from the TeachPoint page. Only Cartesian

coordinate points are supported

Optional parameter:

 Arm orientation: If the robot is a SCARA type, please set to left or right. If the robot is a 6-

axis type, this parameter is invalid

 User: Indicate User coordinate system. Value range: 0 - 9

 Tool: Indicate Tool coordinate system. Value range: 0 - 9

 CP: Whether to set continuous path function. Value range: 0 - 100

 SpeedS: Velocity rate. Value range: 1 - 100

 AccelS: Acceleration rate. Value range: 1 – 100

 SYNC: Synchronization flag. Value range: 0 or 1. If SYNC is 0, it indicates asynchronous

execution, this command has a return immediately after calling it, regardless of the

command process. If SYNC is 1, it indicates synchronous execution. After calling this

command, it will not return until it is executed completely

Example While true do

Go(P1)

Arc3(P2,P3)

end

The robot cycles from point P1 to point P3 in the arc interpolated mode

Table 2.12 Jump command

Function Jump(P,”ARM=Left User=1 Tool=2 Speed=50 Accel=20 Arch=1 SYNC=1”)

Jump(P,”ARM=Left User=1 Tool=2 Speed=50 Accel=20 Start=10 ZLimit=80 End=50

SYNC=1”)

Description If the robot is a SCARA type, the robot moves from the current position to a target position

in the Go mode. The trajectory looks like a door

 If the robot is a six-robot type, the robot moves from the current position to a target position

in the Move mode. The trajectory looks like a door

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 51

Parameter Required parameter: P: Indicate the target point, which is user-defined or obtained from the

TeachPoint page. Only Cartesian coordinate points are supported. Also, the target point cannot

be higher than ZLimit, to avoid an alarm about JUMP parameter error

Optional parameter:

 ARM: Arm orientation: If the robot is a SCARA type, please set to left or right. If the robot

is a 6-axis type, this parameter is invalid

 User: Indicate User coordinate system. Value range: 0 - 9

 Tool: Indicate Tool coordinate system. Value range: 0 - 9

 Speed: Velocity rate. Value range: 1 - 100

 Accel: Acceleration rate. Value range: 1 - 100

 Arch: Arch index. Value range: 0 - 9

 Start: Lifting height

 ZLimit: Maximum lifting height

 End: Dropping height

 SYNC: Synchronization flag. Value range: 0 or 1. If SYNC is 0, it indicates asynchronous

execution, this command has a return immediately after calling it, regardless of the

command process. If SYNC is 1, it indicates synchronous execution. After calling this

command, it will not return until it is executed completely

Example Jump(P1)

The robot moves to point P1 in the Jump mode

NOTICE

The lifting height and dropping height cannot be higher than ZLimit, to avoid an alarm

on JUMP parameter error.

Table 2.13 Circle3 command

Function Circle3(P1,P2,Count, ”ARM=Left User=1 Tool=2 CP=1SpeedS=50 AccelS=20”)

Description Move from the current position to a target position in a circular interpolated mode under the

Cartesian coordinate system

This command needs to combine with other motion commands, to obtain the starting point of an

arc trajectory

Parameter Required parameter

 P1: Middle point, which is user-defined or obtained from the TeachPoint page. Only

Cartesian coordinate points are supported

 P2: End point, which is user-defined or obtained from the TeachPoint page. Only Cartesian

coordinate points are supported

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 52

 Count: Number of circles. Value range: 1 - 999

Optional parameter:

 ARM: Arm orientation: If the robot is a SCARA type, please set to left or right. If the robot

is a 6-axis type, this parameter is invalid

 User: Indicate User coordinate system. Value range: 0 - 9

 Tool: Indicate Tool coordinate system. Value range: 0 - 9

 CP: Whether to set continuous path function. Value range: 0 - 100

 SpeedS: Velocity rate. Value range: 1 - 100

 AccelS: Acceleration rate. Value range: 1 - 100

 SYNC: Synchronization flag. Value range: 0 or 1. If SYNC is 0, it indicates asynchronous

execution, this command has a return immediately after calling it, regardless of the

command process. If SYNC is 1, it indicates synchronous execution. After calling this

command, it will not return until it is executed completely

Example Go(P1)

Circle3(P2,P3,1)

Robot cycles from point P1 to point P3 in the circular interpolated mode

Table 2.14 RP command

Function RP(P1, {OffsetX, OffsetY, OffsetZ})

Description Set the X, Y, Z axes offset under the Cartesian coordinate system to return a new Cartesian

coordinate point

The robot can move to this point in all motion commands except MoveJ

Parameter P1: Indicate the current Cartesian coordinate point, which is user-defined or obtained from

the TeachPoint page. Only Cartesian coordinate points are supported

 OffsetX，OffsetY，OffsetZ: X, Y, Z axes offset in the Cartesian coordinate system

Unit: mm

Return Cartesian coordinate point

Example P2=RP(P1, {50,10,32})

Move(P2) or Move(RP(P1, {50,10,32}))

Table 2.15 RJ command

Function RJ(P1, {Offset1, Offset2, Offset3, Offset4, Offset5, Offset6})

Description Set the joint offset in the Joint coordinate system to return a new joint coordinate point

The robot can move to this point only in MoveJ command

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 53

Parameter P1: Indicate the current joint coordinate point, which cannot be obtained from the

TeachPoint page. You need to define the joint coordinate point before calling this command

 Offset1~Offset6: J1 - J6 axes offset. If the robot is a SCARA type, Offset5 and Offset 6 are

invalid

Unit: °

Return Joint coordinate point

Example Take a SCARA robot as an example:

local P1 = {joint={0,-0.0674194,0,0}}

P2=RJ(P1, {60,50,32,30})

MoveJ(P2) or MoveJ(RJ(P1, {60,50,32,30}))

Table 2.16 GoR command

Function GoR({OffsetX, OffsetY, OffsetZ},”ARM=Left User=1 Tool=2 CP=1 Speed=50 Accel=20

SYNC=1 ”)

Description Move from the current position to the offset position in a point-to-point mode under the Cartesian

coordinate system

Parameter Required parameter: OffsetX, OffsetY, OffsetZ: X, Y, Z axes offset in the Cartesian coordinate

system

Unit: mm

Optional parameter:

 ARM: Arm orientation: If the robot is a SCARA type, please set to left or right. If the robot

is a 6-axis type, this parameter is invalid

 User: Indicate User coordinate system. Value range: 0 - 9

 Tool: Indicate Tool coordinate system. Value range: 0-9

 CP: Whether to set continuous path function. Value range: 0- 100

 Speed: Velocity rate. Value range: 1 - 100

 Accel: Acceleration rate. Value range: 1 -100

 SYNC: Synchronization flag. Value range: 0 or 1. If SYNC is 0, it indicates asynchronous

execution, this command has a return immediately after calling it, regardless of the

command process. If SYNC is 1, it indicates synchronous execution. After calling this

command, it will not return until it is executed completely

Example Go(P1)

GoR({10,10,10},"Accel=100 Speed=100 CP=100")

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 54

Table 2.17 MoveJR command

Function MoveJR({Offset1, Offset2, Offset3, Offset4, Offset5, Offset6},” CP=1 Speed=50

Accel=20 SYNC=1”)

Description Move from the current position to the offset position in a point-to-point motion under the Joint

coordinate system

Parameter Required parameter: Offset1 - Offset6: J1 - J6 axes offset. If the robot is a SCARA type, Offset5

and Offset 6 are invalid

Unit: °

Optional parameter:

 CP: Whether to set continuous path function. Value range: 0 - 100

 Speed: Velocity rate. Value range: 1 - 100

 Accel: Acceleration rate. Value range: 1 - 100

 SYNC: Synchronization flag. Value range: 0 or 1. If SYNC is 0, it indicates asynchronous

execution, this command has a return immediately after calling it, regardless of the

command process. If SYNC is 1, it indicates synchronous execution. After calling this

command, it will not return until it is executed completely

Example Go(P1)

MoveJR({20,20,10,0},"SYNC=1")

Table 2.18 MoveR command

Function MoveR({OffsetX, OffsetY, OffsetZ},”ARM=Left User=1 Tool=2 CP=1 SpeedS=50

AccelS=20 SYNC=1”)

Description Move from the current position to the offset position in a straight line under the Cartesian

coordinate system

Parameter Required parameter: OffsetX, OffsetY, OffsetZ: X, Y, Z axes offset in the Cartesian coordinate

system

Unit: mm

Optional parameter:

 ARM: Arm orientation: If the robot is a SCARA type, please set to left or right. If the robot

is a 6-axis type, this parameter is invalid

 User: Indicate User coordinate system. Value range: 0 - 9

 Tool: Indicate Tool coordinate system. Value range: 0 - 9

 CP: Whether to set continuous path function. Value range: 0 - 100

 SpeedS: Velocity rate. Value range: 1 - 100

 AccelS: Acceleration rate. Value range: 1 - 100

 SYNC: Synchronization flag. Value range: 0 or 1. If SYNC is 0, it indicates asynchronous

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 55

execution, this command has a return immediately after calling it, regardless of the

command process. If SYNC is 1, it indicates synchronous execution. After calling this

command, it will not return until it is executed completely

Example Go(P1)

MoveR({20,20,20},"AccelS=100 SpeedS=100 CP=100")

 Motion Parameter Commands

Table 2.19 Motion parameter command

Command Description

Accel Set the acceleration rate. This command is valid only

when the motion mode is Go, Jump, or MoveJ

AccelS Set the acceleration rate. This command is valid only

when the motion mode is Move, Arc3, or Circle3

Speed Set the velocity rate. This command is valid only when

the motion mode is Go, Jump, or MoveJ

SpeedS Set the velocity rate. This command is valid only when

the motion mode is Move, Arc3, or Circle3

Arch Set the index of sets of parameters (StartHeight,

zLimit, EndHeight) in Jump mode

CP Set the continuous path function

LimZ Set the maximum lifting height in the Jump mode

Table 2.20 Accel command

Function Accel(R)

Description Set the acceleration rate. This command is valid only when the motion mode is Go, Jump, or

MoveJ

Parameter R: Percentage. Value range: 1 - 100

Example Accel(50)

Go(P1)

The robot moves to point P1 with 50% acceleration rate

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 56

Table 2.21 AccelS command

Function AccelS(R)

Description Set the acceleration rate. This command is valid only when the motion mode is Move, Arc3, or

Circle3

Parameter R: Percentage. Value range: 1 - 100

Example AccelS(20)

Move(P1)

The robot moves to point P1 with 20% acceleration rate

Table 2.22 Speed command

Function Speed(R)

Description Set the velocity rate. This command is valid only when the motion mode is Go, Jump, or MoveJ

Parameter R: Percentage. Value range: 1 - 100

Example Speed(20)

Go(P1)

The robot moves to point P1 with 20% velocity rate

Table 2.23 SpeedS command

Function SpeedS(R)

Description Set the acceleration rate. This command is valid only when the motion mode is Move, Arc3, or

Circle3

Parameter R: Percentage. Value range: 1 - 100

Example SpeedS(20)

Move(P1)

The robot moves to point P1 with 20% velocity rate

Table 2.24 Arch command

Function Arch(Index)

Description Set the index of sets of parameters (StartHeight, zLimit, EndHeight) in the Jump mode

The sets of parameters need to be set on the Config> RobotParams>PlayBack Arch of

DobotSCStduio. For details, please see 1.2.1 Setting Motion Parameter

Parameter Index: Index of the sets parameters. Value range: 0 - 9

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 57

This parameter is valid only when the right index has been selected from the Config>

RobotParams>PlayBack Arch of DobotSCStduio

Example Arch(1)

Jump(P1)

Table 2.25 CP command

Function CP(R)

Description Set the continuous path rate. This command is valid only when the motion mode is Go, Move,

Arc3, Circle3, or MoveJ

Parameter R: Continuous path rate. Value range: 0 -100

0 indicates that the Continuous path function is disabled

Example CP(50)

Move(P1)

Move(P2)

The robot moves from point P1 to point P2 with 50% Continuous path ratio

Figure 2.1 Continuous path

Table 2.26 LimZ command

Function LimZ(zValue)

Description Set the maximum lifting height in Jump mode

Parameter zValue: The maximum lifting height which cannot exceed the Z-axis limiting position of the

robot

Example LimZ(80)

Jump(P,” Start=10 ZLimit=LimZ End=50”)

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 58

 Input/output Commands

Table 2.27 Input/output command

Command Description

DI Get the status of the digital input port

DO Set the status of the digital output port (Queue

command)

DOExecute Set the status of the digital output port (Immediate

command)

NOTE

Dobot robot system supports two kinds of commands: Immediate command and queue

command:

 Immediate command: The robot system will process the command once received

regardless of whether there is the rest commands processing or not in the current

controller;

 Queue command: When the robot system receives a command, this command will

be pressed into the internal command queue. The robot system will execute

commands in the order in which the commands were pressed into the queue.

Table 2.28 Digital input command

Function DI(index)

Description Get the status of the digital input port

Parameter index: Digital input index. Value range: 1 - 16

Return When an index is set in the DI function, DI(index) returns the status (ON/OFF) of this

speicified input port

 When there is no index in the DI function, DI() returns the status of all the input ports,

which are saved in a table

For example, local di=(), the saving format is {num = 24 value = {0x55, 0xAA, 0x52}},

you can obtain the status of the specified input port with di.num and di.value[n]

Example if (DI(1))==ON then

Move(P1)

end

The robot moves to point P1 when the status of the digital input port 1 is ON

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 59

Table 2.29 Digital output command (Queue command)

Function DO(index, ON | OFF)

Description Set the status of digital output port (Queue command)

Parameter index: Digital output index. Value range: 1- 24

 ON/OFF: Status of the digital output port. ON: High level; OFF: Low level

Example DO(1,ON)

Set the status of the digital output port 1to ON

Table 2.30 Digital output command (Immediate command)

Function DOExecute(index, ON | OFF)

Description Set the status of digital output port (Immediate command)

Parameter index: Digital output index. Value range: 1 - 24

 ON/OFF: Status of the digital output port. ON: High level; OFF: Low level

Example DOExecute(1,OFF)

Set the status of the digital output port 1 to OFF

 Program Managing Commands

Table 2.31 Program managing command

Command Description

Wait Set the delay time for robot motion commands

Sleep Set the delay time for all commands

Pause Pause the running program

ResetElapsedTime Start timing

ElapsedTime Stop timing

System Get the current time

Table 2.32 Wait command

Function Wait(time)

Description Set the delay time for robot motion commands

Parameter time: Delay time. Unit: ms

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 60

Example Go(P1)

Wait(1000)

Wait for 1000ms after the robot moves to point P1

Table 2.33 Sleep command

Function Sleep(time)

Description Set the delay time for all commands

Parameter time: Delay time. Unit: ms

Example while true do

Speed(100)

Go(P1)

sleep(3)

Speed(100)

Accel(40)

Go(P2)

sleep(3)

end

Table 2.34 Pause command

Function Pause()

Description Pause the running program

When the program runs to this command, robot pauses running and the button on

DobotSCStduio turns into . If the robot continues to run, please click

Parameter None

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 61

Example while true

do

Go(P1)

Go(P2)

Pause()

Go(P3)

Go(P4)

end

The robot moves to point P2 and then pauses running

Table 2.35 Star timing command

Function ResetElapsedTime()

Description Start timing after all commands before this command are executed completely. Use in conjunction

with ElapsedTime() command

For example: Get the execution time that a piece of code takes

Parameter None

Return None

Example Go(P2, " Speed=100 Accel=100")

ResetElapsedTime()

for i=1,10 do

Jump(P1, " Speed=100 Accel=100 Start=0 End=0 ZLimit=185")

Jump(P2, " Speed=100 Accel=100 Start=0 End=0 ZLimit=185")

end

print (ElapsedTime())

Sleep(1000)

Table 2.36 Stop timing command

Function ElapsedTime()

Description Stop timing and return the time difference. Use in conjunction with ResetElapsedTime()

command

Parameter None

Return Time difference. Unit: ms

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 62

Example Go(P2, " Speed=100 Accel=100")

ResetElapsedTime()

for i=1,10 do

Jump(P1, " Speed=100 Accel=100 Start=0 End=0 ZLimit=185")

Jump(P2, " Speed=100 Accel=100 Start=0 End=0 ZLimit=185")

end

print (ElapsedTime())

Sleep(1000)

Table 2.37 Get current time command

Function Systime()

Description Get the current time

Parameter None

Return Current time

Example Go(P2, " Speed=100 Accel=100")

local time1=Systime()

for i=1,10 do

Jump(P1, " Speed=100 Accel=100 Start=0 End=0 ZLimit=185")

Jump(P2, " Speed=100 Accel=100 Start=0 End=0 ZLimit=185")

end

local time2=Systime()

local time = time2 - time1

Sleep(1000)

 Pose Getting Command

Table 2.38 Pose command (1)

Function GetPose()

Description Get the current pose of the robot under the Cartesian coordinate system

If you have set the User or Tool coordinate system, the current pose is under the current User or

Tool coordinate system

Parameter None

Return Cartesian coordinate of the current pose

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 63

Example local currentPose = GetPose()

--Get the current pose

local liftPose = {armOrientation = left , coordinate = {currentPose.coordinate[1], currentPose.

coordinate[2], currentPose. coordinate[3],currentPose. coordinate[4] }, tool = currentPose.tool,

user = currentPose.user}

-- Lift a certain height

Go(liftPose,"Speed=100 Accel=100")

Go(P1)

Table 2.39 Pose command (2)

Function GetAngle()

Description Get the current pose of the robot under the Joint coordinate system

Parameter None

Return Joint coordinate of the current pose

Example local armPose

local joint = GetAngle()

--Get the current pose

if joint.joint[2] > 0 then

armPose = "right"

else

armPose = "left"

end

local liftPose = {armOrientation = armPose , joint = {joint.joint[1], joint.joint[2], joint.joint[3],

joint.joint[4]}, tool = 0, user = 0}

 TCP

Table 2.40 Create TCP command

Function err, socket = TCPCreate(isServer, IP, port)

Description Create a TCP network

Only support a single connection

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 64

Parameter isServer: Whether to create a server. 0: Create a client; 1: Create a server

IP: IP address of the server, which is in the same network segment of the client without conflict

port: Server port

When the robot is set as a server, port cannot be set to 502 and 8080. Otherwise, it will be in

conflict with the Modbus default port or the port used in the conveyor tracking application,

causing the creation to fail

Return err：

0: TCP network is created successfully

1: TCP network is created failed

Socket: Socket object

Example Please refer to Program 2.1 and Program 2.2

Table 2.41 TCP connection command

Function TCPStart(socket, timeout)

Description Connect a client to a server with the TCP protocol

Parameter socket: Socket object

timeout: Wait timeout. Unit: s. If timeout is 0, the connection is still waiting. If not, after

exceeding the timeout, the connection is exited.

Return 0: TCP connection is successful

 1: Input parameters are incorrect

 2: Socket object is not found

 3: Timeout setting is incorrect

 4: If the robot is set as a client, it indicates that the connection is wrong. If the robot is set

as a server, it indicates that receiving data is wrong

Example Please refer to Program 2.1 and Program 2.2

Table 2.42 Receive data command

Function err, Recbuf = TCPRead(socket, timeout, type)

Description Robot as a client receives data from a server

Robot as a server receives data from a client

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 65

Parameter socket: socket object

timeout: Receiving timeout. Unit: s. If timeout is 0 or is not set, this command is a block reading.

Namely, the program will not continue to run until receiving data is complete. If not, after

exceeding the timeout, the program will continue to run regardless of whether receiving data is

complete

type: Buffer type. If type is not set, the buffer format of RecBuf is a table. If type is set to string,

the buffer format is a string

Return err:

0: Receiving data is successful

1: Receiving data is failed

Recbuf: Data buffer

Example Please refer to Program 2.1 and Program 2.2

Table 2.43 Send data command

Function TCPWrite(socket, buf, timeout)

Description The robot as a client sends data to a server

The robot as a server sends data to a client

Parameter socket: Socket object

buf: Data sent by the robot

timeout: Timeout. Unit: s. If timeout is 0 or not set, this command is a block reading. Namely,

the program will not continue to run until sending data is complete. If not, after exceeding the

timeout, the program will continue to run regardless of whether sending data is complete

Return 0: Sending data is successful

1: Sending data is failed

Example Please refer to Program 2.1 and Program 2.2

Table 2.44 Release TCP network command

Function TCPDestroy(socket)

Description Release a TCP network

Parameter socket: Socket object

Return 0: Releasing TCP is successful

1: Releasing TCP is failed

Example Please refer to Program 2.1 and Program 2.2

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 66

 NOTICE

 Only a single TCP connection is supported. Please start the server before connecting

a client. Please shut down the client before disconnection, to avoid re-connection

failure since the server port is not released in time.

 When the robot is set as a server, the IP address of the robot can be checked and modified on

the Config> NetworkSetting page of DobotSCStudio. Also, the port cannot be set

to 502 and 8080. Otherwise, it will be in conflict with the Modbus default port or

the port used in the conveyor tracking application, causing the creation to fail.

Program 2.1 TCP server demo

local ip="192.168.5.1" // IP address of the robot as a server

local port=6001 // Server port

local err=0

local socket=0

err, socket = TCPCreate(true, ip, port)

if err == 0 then

err = TCPStart(socket, 0)

if err == 0 then

local RecBuf

while true do

TCPWrite(socket, "tcp server test") // Server sends data to client

err, RecBuf = TCPRead(socket,0,"string") // Server receives the data from client

if err == 0 then

Go(P1) //Start to run motion commands after the server receives data

Go(P2)

print(Recbuf)

else

print("Read error ".. err)

break

end

end

else

print("Create failed ".. err)

end

TCPDestroy(socket)

else

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 67

print("Create failed ".. err)

end

Program 2.2 TCP client demo

local ip="192.168.5.25" // External equipment such as a camera is set as the server

local port=6001 // Server port

local err=0

local socket=0

err, socket = TCPCreate(false, ip, port)

if err == 0 then

err = TCPStart(socket, 0)

if err == 0 then

local RecBuf

while true do

TCPWrite(socket, "tcp client test") // Client sends data to server

TCPWrite(socket, {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07})

err, RecBuf = TCPRead(socket, 0) // Client receives data from server

if err == 0 then

Go(P1) // Start to run motion commands after the client receives the data

Go(P2)

print(Recbuf)

else

print("Read error ".. err)

break

end

end

else

print("Create failed ".. err)

end

TCPDestroy(socket)

else

print("Create failed ".. err)

end

 UDP

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 68

Table 2.45 Create UDP network command

Function err, socket = UDPCreate(isServer, IP, port)

Description Create a UDP network

Only a single connection is supported

Parameter isServer: Whether to create a server. 0: Create a client; 1: Create a server

IP: IP address of the server, which is in the same network segment of the client without conflict

port: Server port

When the robot is set as a server, port cannot be set to 502 or 8080. Otherwise, it will be in

conflict with the Modbus default port or the port used in the conveyor tracking application,

causing the creation to fail

Return err：

0: The UDP network is created successfully

1: The UDP network is created failed

socket: Socket object

Example Please refer to Program 2.3 and Program 2.4

Table 2.46 Receive data command

Function err, Recbuf = UDPRead(socket, timeout, type)

Description The robot as a client receives data from a server

The robot as a server receives data from a client

Parameter socket: socket object

timeout: Receiving timeout. Unit: s. If timeout is 0 or not set, this command is a block reading.

Namely, the program will not continue to run until receiving data is complete. If not, after

exceeding the timeout, the program will continue to run regardless of whether receiving data is

complete

type: Buffer type. If type is not set, the buffer format of RecBuf is a table. If type is set to string,

the buffer format is a string

Return err：

0: Receiving data is successful

1: Receiving data is failed

Recbuf: Data buffer

Example Please refer to Program 2.3 and Program 2.4

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 69

Table 2.47 Send data command

Function UDPWrite(socket, buf, timeout)

Description The robot as a client sends data to a server

The robot as a server sends data to a client

Parameter socket: Socket object

buf: Data sent by the robot

timeout: Timeout. Unit: s. If timeout is 0 or not set, this command is a block reading. Namely,

the program will not continue to run until sending data is complete. If not, after exceeding the

timeout, the program will continue to run regardless of whether sending data is complete

Return 0: Sending data is successful

1: Sending data is failed

Example Please refer to Program 2.3 and Program 2.4

NOTICE

 Only a single UDP connection is supported. Please start the server before

connecting a client. Please shut down the client before disconnection, to avoid re-

connection failure since the server port is not released in time.

 When the robot is set as a server, the IP address of the robot can be checked and modified on

the Config > NetworkSetting page of DobotSCStudio. Also, the port cannot be set

to 502 and 8080. Otherwise, it will be in conflict with the Modbus default port or

the port used in the conveyor tracking application, causing the creation to fail.

Program 2.3 UDP server demo

local ip="192.168.5.1" // IP address of the robot as a server

local port=6201 // Server port

local err=0

local socket=0

err, socket = UDPCreate(true, ip, port)

if err == 0 then

local RecBuf

while true do

UDPWrite(socket, "udp server test") // Server sends data to client

err, RecBuf = UDPRead(socket, 0) //Server receives the data from client

if err == 0 then

Go(P1) // Start to run motion commands after the server receives the data

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 70

Go(P2)

print(Recbuf)

else

print("Read error ".. err)

break;

end

end

else

print("Create failed ".. err)

end

Program 2.4 UDP client demo

local ip="192.168.1.25" // IP address of the external equipment

as a server

local port=6200 // server port

local err=0

local socket=0

err, socket = UDPCreate(false, ip, port)

if err == 0 then

local RecBuf

while true do

UDPWrite(socket, "udp client test") // Client sends data to server

UDPWrite(socket, {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07})

err, RecBuf = UDPRead(socket, 0) // Client receives the data from server

if err == 0 then

Go(P1) // Start to run motion commands after the client receives the data

Go(P2)

print(Recbuf)

else

print("Read error ".. err)

break

end

end

else

print("Create failed ".. err)

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 71

end

 Modbus

 Modbus Register Description

Modbus protocol is a serial communication protocol. The robot system can communicate with

external equipment by this protocol. Here, External equipment such as a PLC is set as the Modbus

master, and the robot system is set as the salve.

Modbus data is most often read and written as registers. Based on our robot memory space, we

also define four types of registers: coil, discrete input, input, and holding registers for data

interaction between the external equipment and robot system. Each register has 4096 addresses. For

details, please see as follows.

 Coil register

Table 2.48 Coil register description

Coil register address

(e.g.: PLC)

Coil register address

(Robot system)

Data type Description

00001 0 Bit Start

00002 1 Bit Pause

00003 2 Bit Continue

00004 3 Bit Stop

00005 4 Bit Emergency stop

00006 5 Bit Clear alarm

00007-0999 6-998 Bit Reserved

01001-04096 999-4095 Bit User-defined

 Discrete input register

Table 2.49 Discrete input register description

Discrete input register

address (e.g.: PLC)

Discrete input register

address(Robot system)

Data type Description

10001 0 Bit Automated exit

10002 1 Bit Ready state

10003 2 Bit Paused state

10004 3 Bit Running state

10005 4 Bit Alarm state

10006-10999 5-998 Bit Reserved

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 72

Discrete input register

address (e.g.: PLC)

Discrete input register

address(Robot system)

Data type Description

11000-14096 999-4095 Bit User-defined

 Input register

Table 2.50 Input register description

Input register address

(e.g.: PLC)

Input register address

(Robot system)

Data type Description

30001-34096 0-4095 Byte Reserved

 Holding register

Table 2.51 Holding register description

Holding register

address

(e.g.: PLC)

Holding register

address

(Robot system)

Data type Description

40001-41000 0-999 Byte Reserved

41001-44095 1000-4095 Byte User-defined

 Command Description

Table 2.52 Rea coil register command

Function GetCoils(addr, count)

Description Read the coil value from the Modbus slave

Parameter addr: Starting address of the coils to read. Value range: 0 - 4095

count: Number of the coils to read. Value range: 0 to 4096-addr

Return Return a table, each with the value 1 or 0, where the first value in the table corresponds to the coil

value at the starting address

Example Read 5 coils starting at address 0

Coils = GetCoils(0,5)

Return:

Coils={1,0,0,0,0}

As shown in Table 2.47, it indicates that the robot is in the starting state

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 73

Table 2.53 Set coil register command

Function SetCoils(addr, count, table)

Description Set the coil register in the Modbus slave

This command is not supported when the coil register address is from 0 to 5

Parameter Addr: Starting address of the coils to set. Value range: 6 - 4095

count: Number of the coils to set. Value range: 0 to 4096-addr

table: Coil value, stored in a table

Return None

Example Set 5 coils starting at address 1024

local Coils = {0,1,1,1,0}

SetCoils(1024, #coils, coils)

Table 2.54 Read discrete input register command

Function GetInBits(addr, count)

Description Read the discrete input value from Modbus slave

Parameter addr: Starting address of the discrete inputs to read. Value range: 0-4095

count: Number of the discrete inputs to read. Value range: 0 to 4096-addr

Return Return a table, each with the value 1 or 0, where the first value in the table corresponds to the

discrete value at the starting address

Example Read 5 discrete inputs starting at address 0

inBits = GetInBits(0,5)

Return:

inBits = {0,0,0,1,0}

As shown in Table 2.48, it indicates the robot is in running state

Table 2.55 Read input register command

Function GetinRegs(addr, count, type)

Description Read the input register value with the specified data type from the Modbus slave

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 74

Parameter addr: Starting address of the input registers. Value range: 0 - 4095

count: Number of the input registers to read. Value range: 0 ~ 4096-addr

type：Data type

 Empty: Read 16-bit unsigned integer (two bytes, occupy one register)

 “U16”: Read 16-bit unsigned integer (two bytes, occupy one register)

 “U32”: Read 32-bit unsigned integer (four bytes, occupy two registers)

 “F32”: Read 32-bit single-precision floating-point number (four bytes, occupy two

registers)

 “F64”: Read 64-bit double-precision floating-point number (eight bytes, occupy four

registers)

Return Return a table, the first value in the table corresponds to the input register value at the starting

address

Example Example 1: Read a 16-bit unsigned integer starting at address 2048

data = GetInRegs(2048,1)

Example 2: Read a 32-bit unsigned integer starting at address 2048

data = GetInRegs(2048, 1, “U32”)

Table 2.56 Read holding register command

Function GetHoldRegs(addr, count, type)

Description Read the holding register value from the Modbus slave according to the specified data type

Parameter addr: Starting address of the holding registers. Value range: 0 - 4095

count: Number of the holding registers to read. Value range: 0 to 4096-addr

type: Datatype

 Empty: Read 16-bit unsigned integer (two bytes, occupy one register)

 “U16”: Read 16-bit unsigned integer (two bytes, occupy one register)

 “U32”: Read 32-bit unsigned integer (four bytes, occupy two registers)

 “F32”: Read 32-bit single-precision floating-point number (four bytes, occupy two

registers)

 “F64”: Read 64-bit double-precision floating-point number (eight bytes, occupy four

registers)

Return Return a table, the first value in the table corresponds to the input register value at the starting

address

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 75

Example Example 1: Read a 16-bit unsigned integer starting at address 2048

data = GetHoldRegs(2048,1)

Example 1: Read a 32-bit unsigned integer starting at address 2048

data = GetInRegs(2048, 1, “U32”)

Table 2.57 Set holding register command

Function SetHoldRegs(addr, count, table, type)

Description Set the holding register in the Modbus slave

Parameter addr: Starting address of the holding registers to set. Value range: 0 - 4095

count: Number of the holding registers to set. Value range: 0 to 4096-addr

table: Holding register value, stored in a table

type: Datatype

 Empty: Read 16-bit unsigned integer (two bytes, occupy one register)

 “U16”: Set 16-bit unsigned integer (two bytes, occupy one register)

 “U32”: Set 32-bit unsigned integer (four bytes, occupy two registers)

 “F32”: Set 32-bit single-precision floating-point number (four bytes, occupy two

registers)

 “F64”: Set 64-bit double-precision floating-point number (eight bytes, occupy four

registers)

Return None

Example Example1: Set a 16-bit unsigned integer starting at address 2048

local data = {6000}

SetHoldRegs(2048, #data, data, “U16”)

Example2: Set a 64-bit double-precision floating-point number starting at address 2048

local data = {95.32105}

SetHoldRegs(2048, #data, data, “F64”)

 ECP

ECP (External Control Point) is a coordinate system data used for defining the robot position

and orientation at a processing point on the tip of the outside fixed tool, as shown in Figure 2.2.

After setting the ECP, the robot can grab a part and move following the specified trajectory around

the ECP, for example, sewing application.

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 76

Figure 2.2 ECP

Table 2.58 Enable ECP command

Function ECP(isOn)

Description Enable the ECP function

Parameter isOn: Whether to enable the ECP. ON: Enable; OFF: Disable

Return None

Example Please refer to Program 2.5

Table 2.59 Set ECP command

Function ECPSet(point)

Description Set ECP

This command is valid only when enabling the ECP

Parameter point: Taught point

Return None

Example P1={armOrientation="left", coordinate={630,-32, 95.5,90}, tool=0, user=0}

ECPSet(P1)

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 77

Program 2.5 ECP demo

while true do

ECPSet(P1)

ECP(ON)

Move(P2, ”SpeedS=80 CP=10”)

Move(P3, ”SpeedS=80 CP=10”)

Arc3(P4,P5, ”SpeedS=80 CP=10”)

Move(P6, ”SpeedS=80 CP=10”)

ECP(OFF)

end

 Process Command

 Conveyor Tracking Command

Table 2.60 Set conveyor parameter command

Function CnvVison(CnvID)

Description Set conveyor number to create a tracing queue

Parameter CnvID: Conveyor number

Return 0: No error

1: Error

Example CnvVison(1)

Send the information (resolution ratio, Starting position, direction and bound) of

Conveyor 1 to the robot system

Table 2.61 Obtain status of the object

Function GetCnvObject(CnvID, ObjID)

Description Obtain the information of the part on the conveyor to check whether the part is in the pickup area

Parameter CnvID: Conveyor index

ObjID: Part index

Return Part status: Whether there is a part. Value range: true or false

Part type

Part coordinate (x,y,r)

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 78

Example P111 = {0,0,0}

while true do

flag,typeObject,P111 = GetCnvObject(0,0)

if flag == true then

break

end

Sleep(20)

end

Table 2.62 Set offset command

Function SetCnvPointOffset(xOffset,yOffset)

Description Set X,Y axes offset under the set User coordinate system

Parameter xOffset: X axis offset

yOffset: Y axis offset

Unit: mm

Return 0: No error

1: Error

Table 2.63 Set time compensation command

Function SetCnvTimeCompensation (time)

Description Set time compensation

This command is used for compensating the pick-up position offset in the moving direction of the

conveyor which is caused by taking photos with a time delay

Parameter time: time-offset. Unit: ms

Return 0: No error

1: Error

Table 2.64 Synchronize conveyor command

Function SyncCnv (CnvID)

Description Synchronize the specified conveyor

The motion commands used between SyncCnv(CnvID) and StopSyncCnv(CnvID) only support

Move command

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 79

Parameter CnvID: Conveyor index

Return 0: No error

1: Error

Table 2.65 Stop synchronizing conveyor command

Function StopSyncCnv (CnvID)

Description Stop synchronizing the conveyor

The other commands following this command will not be executed until this command running

is completed

Parameter CnvID: Conveyor index

Return 0: No error

1: Error

 Pallet Commands

Table 2.66 Create matrix pallet command

Function Pallet = MatrixPallet (index, “IsUnstack= true Userframe= 1”)

Description Instantiate matrix pallet

Parameter Index: Matrix pallet index

Optional parameter:

IsUnstack: Stack mode. Value range: true or false. true: Dismantling mode . false: Assembly

mode. If not set, the default is assembly mode

Userframe: User coordinate system index. If not set, the default is User 0 coordinate system

Return Matrix pallet object

Example myPallet = MatrixPallet(0, “IsUnstack=tsrue Userframe=8”)

Table 2.67 Set the next stack index command

Function SetPartIndex (Pallet, index)

Description Set the next stack index which is to be operated

Parameter Pallet: Pallet object

index: 0 The next stack index. Initial value: 0

Return None

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 80

Example local myPallet = MatrixPallet(0, “IsUnstack=true Userframe=8”)

SetPartIndex(myPallet,1)

The next stack index to be operated is 2

Table 2.68 Get the current operated stack index

Function GetPartIndex (Pallet)

Description Get the current operated stack index

Parameter Pallet: Pallet object

Return The current operated stack index

Example local index=GetPartIndex(myPallet)

If the return value is 1, it indicates that the current operated stack index is 2

Table 2.69 Set the next pallet layer index command

Function SetLayerIndex (Pallet, index)

Description Set the next pallet layer index which is to be operated

Parameter Pallet: Pallet object

index: The next pallet layer index. Initial value: 0

Return None

Example local myPallet = MatrixPallet(0, “IsUnstack=true Userframe=8”)

SetPartIndex(myPallet,1)

The next pallet layer index to be operated is 2

Table 2.70 Get the current pallet layer index command

Function GetLayerIndex (Pallet)

Description Get the current pallet layer index

Parameter Pallet: Pallet object

Return The current pallet layer index

Example local index=GetLayerIndex(myPallet)

If the return value is 1, it indicates that the current operated pallet layer index is 2

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 81

Table 2.71 Reset command

Function Restet (Pallet)

Description Reset pallet

Parameter Pallet: Pallet object

Return None

Example local myPallet = MatrixPallet(0, “IsUnstack=true Userframe=8”)

Reset(myPallet)

Table 2.72 Check the pallet status command

Function IsDone (Pallet)

Description Check whether the stack assembly or dismantling is complete

Parameter Pallet: Pallet object

Return true: Finished

false: Un-finished

Example Result = IsDone(myPallet)

If (result == true)

…

Table 2.73 Release pallet command

Function Release (Pallet)

Description Release pallet object

Parameter Pallet: Pallet object

Return None

Example Release(myPallet)

Table 2.74 MoveIn command

Function MoveIn (Pallet, “velAB=20 velBC=30 accAB=20 accBC=10 CP=20 SYNC=1”)

Description The robot moves from the current position to the first stack position as the configured stack

assembly path

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 82

Parameter Required parameter:

Pallet: Pallet object

Optional parameter:

 velAB: Velocity rate when the robot moves from the transition point to the preparation point.

Value range: 1-100

 velBC: Velocity rate when the robot moves from the preparation point to the first stack

point. Value range: 1-100

 accAB: Acceleration rate when the robot moves from the transition point to the preparation

point. Value range: 1-100

 accBC: Acceleration rate when the robot moves from the preparation point to the first stack

point. Value range: 1-100

 CP: Whether to set continuous path function. Value range: 0- 100

 SYNC: Synchronization flag. Value range: 0 or 1. If SYNC is 0, it indicates asynchronous

execution, this command has a return immediately after calling it, regardless of the

command process. If SYNC is 1, it indicates synchronous execution. After calling this

command, it will not return until it is executed completely

Return None

Example MoveIn(myPallet, “velAB=90 velBC=50”)

Table 2.75 MoveOut command

Function MoveOut (Pallet, “velAB=20 velBC=30 accAB=20 accBC=10 CP=20 SYNC=1”)

Description The robot moves from the current position to the transition point as the configured stack

dismantling path

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 83

Parameter Required parameter

Pallet: Pallet object

Optional parameter

 velAB: Velocity rate when the robot moves from the preparation point to the transition point.

Value range: 1-100

 velBC: Velocity rate when the robot moves from the first stack point to the preparation

point. Value range: 1-100

 accAB: Acceleration rate when the robot moves from the preparation point to the transition

point. Value range: 1-100

 accBC: Acceleration rate when the robot moves from the first stack point to the preparation

point. Value range: 1-100

 CP: Whether to set continuous path function. Value range: 0- 100

 SYNC: Synchronization flag. Value range: 0 or 1. If SYNC is 0, it indicates asynchronous

execution, this command has a return immediately after calling it, regardless of the

command process. If SYNC is 1, it indicates synchronous execution. After calling this

command, it will not return until it is executed completely

Return None

Example MoveOut(myPallet, “velAB=90 velBC=50”)

NOTE

Figure 2.3 and Figure 2.4 show the stack assembly path and dismantling path respectively.

Point A is the transition point, which is fixed or varies with the pallet layer. Point B is the

preparation point which is calculated by the target point and the set offset. Point C is the

first stack point.

Figure 2.3 Stack assembly path

 DobotSCStudio User Guide 2 Program Language

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 84

Figure 2.4 Stack dismantling path

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 85

 Process Guide

 Conveyor Tracking

 Overview

Conveyor tracking is that the vision system or sensor system finds the parts on the conveyor

when conveyor moves constantly and the robot picks them up as they move.

 Building Environment

Figure 3.1 shows the communication process of conveyor tracking. Vision system or

photoelectric sensor for detection is selected based on site requirements. If the photoelectric sensor

is used, the part is detected by a change in the digital input data. If the vision system is used, the

part is detected by the camera and this is triggered by the rising edge of digital output signal.

Figure 3.1 Communication process of the conveyor tracking

Figure 3.2 shows the full process environment of conveyor tracking. Please select a vision

system or photoelectric sensor for detection based on site requirements.

Figure 3.2 Process environment of the conveyor tracking

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 86

3.1.2.1 Encoder

An Encoder is used for recording the conveyor moving distance and the part position and

reporting them to the robot system by a counter. Please connect the Encoder to the EtherCAT

interface on the robot system with the high-speed counter and communication module (called them

as counter module), as shown in Figure 3.3. The E6B2-CWZ1X(1000P/R)Encoder, Beckhoff

EL5101 high-speed counter, and Beckhoff EK1100 communication module are recommended in

this application.

Figure 3.3 Connection between Encoder and robot system

3.1.2.2 Photoelectric Sensor

The photoelectric sensor outputs different level signals according to whether the part is detected

or not. When you connect the photoelectric sensor to a DI interface on the robot system, the

photoelectric sensor can detect parts by a change in this DI interface.

3.1.2.3 Vision System

A vision system is communicated with the robot system by the TCP/IP protocol and is triggered

by the DO interface on the robot system to detect the part.

 If the robot system version is earlier than V3.0.0.20190219121343, the DO 16 is triggered

to take photos for detecting, as shown in Figure 3.4. You can check the robot system

version on the Config>BasicConfig> Version page of the DobotSCStudio.

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 87

Figure 3.4 Vision system connection (1)

 If the robot system version is V3.0.0.20190219121343 or later, the DO 10 is triggered to

take photos for detecting, as shown in Figure 3.5.

Figure 3.5 Vision system connection (2)

 Calibrating Conveyor

Before tracking parts, please calibrating the conveyor, for obtaining the positional relationship

between the conveyor and the robot. In the following steps, we assume that the Y-axis positive

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 88

direction under the base coordinate system is coincident with the moving direction of the conveyor.

Prerequisites

 The robot has been powered on.

 The calibration kit has been installed at the end of the robot.

Procedure

Figure 3.6 Put down a label on the conveyor

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 89

Figure 3.7 User coordinate system page

Figure 3.8 Conveyor calibration

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 90

Figure 3.9 User coordinate system calibration

We assume that the User 1 coordinate system is used. If the R-axis coordinate is 90°,

it indicates that the calibration is successful. Otherwise, please re-calibrate it.

NOTICE

The R-axis coordinate after calibration depends on the positional relationship between

robot and conveyor.

 If the moving direction of the conveyor is the same with the X-axis positive

direction under the base coordinate system, the R-axis coordinate after calibration

is 0°.

 If the moving direction of the conveyor is the same with the X-axis negative

direction under the base coordinate system, the R-axis coordinate after calibration

is 180° or -180°.

 If the moving direction of the conveyor is the same with the Y-axis positive direction

under the base coordinate system, the R-axis coordinate after calibration is 90°.

 If the moving direction of the conveyor is the same with the Y-axis negative

direction under the base coordinate system, the R-axis coordinate after calibration

is -90°.

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 91

 Configuring Conveyor

Prerequisites

 The robot has been powered on.

 The calibration kit has been installed at the end of the robot.

NOTICE

 The full process should be operated under the base coordinate system and the

matched calibration kit is required.

 Please be sure to follow the steps to operate, otherwise, the parameter setting will

fail.

Procedure

The conveyor tracking page is displayed, as shown in Figure 3.10.

Figure 3.10 Conveyor tracking page

Table 3.1 shows the basic parameter description.

Table 3.1 Basic parameter description

Parameter Description

Conveyor index Conveyor index

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 92

Parameter Description

This parameter cannot be set

Conveyor Type Conveyor type

 Linear

 Circular

Only linear type is supported

Encoder Channel Encoder channel

This parameter cannot be set

User Coord Index User coordinate system index

Please select the right index according to the user

coordinate system set in 3.1.3 Calibrating Conveyor

Data Source Detection Mode

 Sensor: Use a sensor to detect parts

 Camera: Use a vision system to detect parts

Please select the mode based on site requirements

 Put down a label on the conveyor, as shown in Figure 3.11.

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 93

Figure 3.11 Put down a label on the conveyor

 Enable the motor and jog the robot to the label position on the conveyor, then

click 1, as shown in Figure 3.12 and Figure 3.13.

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 94

Figure 3.12 Encoder calibration page

Figure 3.13 Encoder calibration

 Control the conveyor to move a specified distance.

 Enable the motor and jog the robot to the label position on the conveyor, then

click 2.

 Click Calculation to obtain the Encoder resolution.

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 95

Encoder resolution is the pulse increment of the Encoder per unit length that

conveyor moves

NOTE

If Data Source is senor, please execute Step 4. If not, please execute Step 5.

Figure 3.14 Sensor calibration page

Sensor calibration is to obtain the position where the sensor finds the part so that the

position of the part under the User coordinate system at every moment can be

calculated based on the coordinate offset when the part moves along with the

conveyor.

Control the conveyor move to a position where the part on the conveyor is within the

workspace of the robot and has been passed the sensor, and jog the robot to the part

center for obtaining the current taught position. At the same time, the robot records

the moving distance of the conveyor after the part is passed the sensor. According to

the current taught position and the moving distance of the conveyor, we can get the

part position when the sensor locates the part. For details, please see as follows.

 Set the related parameters on the sensor setting page.

Table 3.2 lists the sensor parameter description.

Table 3.2 Sensor parameter description

Parameter Description

Conveyor index Conveyor index

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 96

Parameter Description

This parameter cannot be set

Comm DI This parameter cannot be set

Trigger Type Signal outputted when the sensor finds the part

 Raising edge

 Falling edge

This parameter cannot be set

Repeat Thres Reject distance. This parameter is set based on site

requirements

This is used to prevent the registration of the duplicate

parts

 Click Start Listen.

 Put a part on the upstream area of the conveyor and Control the conveyor move.

After the sensor finds the part and meanwhile the part is in the workspace of the

robot, please control the conveyor stop.

 Make the 3-position in the middle gear to enable the motor and jog the robot to

the part center, then click Teach Mech Pose to obtain the current position.

 Click Calc Sensor Pos to obtain the position where the sensor finds the part

Before calibrating the vision system, you need to set the robot IP address and port on

the vision software for communication between the robot and vision system with the

TCP/IP protocol. The robot IP address is 192.168.5.1, and the port is 8080. The data

format is as follows.

 The parts found in the same frame are sent together.

 The data format of a part is (x,y,r,classID). classID is the part type.

 Different part data is separated by a semicolon.

 A frame is terminated by & character.

e.g.: x1,y1,r1,1;x2,y2,r2,4;x3,y3,r3,2&

NOTICE

Vision software depends on the vision brand. So, the settings about the vision system are

different. The details on how to use the vision software are not described in this topic.

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 97

Figure 3.15 Vision system calibration page

The vision system is to obtain the part coordinate under the User coordinate system

where the camera finds it from the conveyor. So that the position of the part under

the User coordinate system at every moment can be calculated based on the

coordinate offset when the part moves along with the conveyor.

Place the calibration board on the conveyor which is in the vision search area and

obtain the image coordinates of the nine points on the calibration board and record

the current position of the conveyor. Move the conveyor to a position where the

calibration board is in the robot workspace and jog the robot to the nine points on the

calibration board and obtain their Cartesian coordinates respectively. At the same

time, record the current position of the conveyor. Based on the Cartesian coordinates

and image coordinates of the nine points and the moving distance of the conveyor,

we can calculate the Cartesian coordinates where camera finds the calibration board

and obtain the relationship between the image coordinate and the Cartesian

coordinate. For details, please see as follows.

 Set the basic parameters of the vision system on the Base tab.

Table 3.3 lists the basic parameter description.

Table 3.3 Basic parameter description

Parameter Description

Conveyor Index Conveyor index

This parameter cannot be set

Width Resolution width

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 98

Parameter Description

Default value: 3072

Height Resolution height

Default value:2048

Trigger DO his parameter cannot be set

Trigger Type This parameter cannot be set

Interval Interval photography

Namely, the robot gives a DO signal to trigger

photography each time conveyor moves a given

distance

The recommended value range is (l -d)/2< Interval < (l

-d)

l indicates the width of the vision search area in the

conveyor moving direction and d indicates the

maximum width of the part

Repeat Thres Reject distance. This parameter is set based on site

requirements

This is used to prevent the registration of the duplicate

parts

Unit Type This parameter cannot be set

 Click Calibration.

The calibration page is displayed.

 Place the calibration board on the conveyor which is in the vision search area

and click Conveyor pose to record the current Encoder value. The calibration

board is shown in Figure 3.16.

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 99

Figure 3.16 Calibration board

 Get the image coordinates of the nine points on the calibration board from the

vision software after the vision system finds the calibration board and input

them to the corresponding positions on the calibration page, as shown in Figure

3.17.

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 100

Figure 3.17 Get the image coordinates

 Click Next.

 Move the conveyor to the position where the calibration board is in the robot

workspace and stop, then click Conveyor Pos to obtain the current Encoder

value.

 Enable the motor and jog the robot to the corresponding nine points on the

calibration board and click the right index on the calibration page respectively

as shown in Figure 3.18 and Figure 3.19.

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 101

Figure 3.18 Vision calibration

Figure 3.19 Get the Cartesian coordinates of the nine points on the calibration board

NOTICE

Please be sure to obtain the Cartesian coordinates in the order of the image coordinates

of the nine points to avoid vision calibration errors.

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 102

 Click Calculation to calculate the Cartesian coordinates of the nine points as

the vision system finds them and obtain the relationship between the image

coordinate and the Cartesian coordinate based on the image coordinates and the

Cartesian coordinates of the nine points and the moving distance of the

conveyor.

Figure 3.20 Border description

Figure 3.21 Border calibration page

Table 3.4 lists the border parameter description

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 103

Table 3.4 Border parameter description

Parameter Description

Conveyor Index Conveyor Index

This parameter cannot be set

Working upstream limit Working upstream limit

Pickup downstream limit Pickup downstream limit

When the part moves out of the Pickup downstream

limit, the robot will not pick up it.

Working downstream limit Working downstream limit

Stop distance This parameter cannot be set

 Enable the motor and jog the robot to the starting tracking position, then click

Working upstream limit to obtain the working upstream limit.

 Enable the motor and jog the robot to the latest starting tracking position that is

expected to complete the process, then click Working upstream limit to obtain

the working upstream limit.

Please set this parameter according to the conveyor speed and practical

experience.

 Enable the motor and jog the robot to the end tracking position, then click

Working downstream limit to obtain the working downstream limit.

 Example

3.1.5.1 Pickup Example Using Vision Conveyor Tracking

In this application, we need to teach six points.

 Waiting point: P1

 Tracking point: P2

 Pickup point: P3

 Lifting point: P4

 Point above the placing point: P5

 Placing point: P6

If the pickup angle is required, you need to set this angle.

This topic takes the pickup application without angle requirement as an example, Figure 3.22

shows the taught positions.

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 104

Figure 3.22 Taught position

Prerequisites

 The vision conveyor tracking project has been created on DobotSCStudio. For details,

please see 1.5.3.1 Creating Project.

 The robot has been connected to the air pump.

 The end effector has been mounted on the end of the robot.

 The robot has been switched to the manual mode.

 The vision software has been installed.

 (Optional) If an eccentric end effector has been mounted, please set the Tool coordinate

system. For details, please see 1.2.3.1 Setting Tool Coordinate System of SCARA Robot.

NOTICE

 Enable the robot motor when jogging the robot.

 Vision software depends on the vision brand. The details on how to set and create a

template are not described in this topic.

 The arm orientations of P1, P2 P3, and P4 must be the same.

 You need to teach P2, P3 and P4 points under the set User coordinate system. If an

eccentric end effector is used, you need to set the Tool coordinate system and then

teach P2, P3 P4 points under the set Tool coordinate system.

 The J3 angle of P1 point is recommended to set to 120°, and the J4 angle is

recommended to set to 0°.

Procedure

NOTICE

If the eccentric end effector is mounted, please execute Step 2 - Step 3 under the set Tool

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 105

coordinate system.

Please set the current template angle to 0°.

NOTE

If you use the sensor to detect parts, please place the parts in the correct direction (The

parts detected by the sensor on the conveyor have a fixed direction)

 Move the conveyor to a position where the part is in the pickup area, jog the

robot to the center of this part, and set the R-axis to 0° under the basic coordinate

system.

 Switch to the set User coordinate system and record the R-axis value which is

called r1.

 Adjust the R-axis to a right pose to pick up the part, and record the R-axis value

which is called r2.

Therefore, the R-axis value r of P2, P3 and P4 points is r2 – r1.

 r > 180°, r = r - 360°

 r < -180°, r = r + 360°

 -180 ≤ r ≤ 180°, r remains unchanged

 Modify the P2, P3 and P4 points on the TeachPoint page. P2=(0,0,z1,r),

P3=(0,0,z0,r), P4=(0,0,z1,r)

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 106

Figure 3.23 Conveyor tracking process

NOTICE

 The motion commands used between SyncCnv(0) and StopSyncCnv() only support

Move command

 The wait, DI and DO commands are supported between SyncCnv(0) and

StopSyncCnv().

Program 3.1 Conveyor tracking program

CnvVison(0) // Activate conveyor

DO(1,0) // Control the air pump status by DO1 and DO2

DO(2,0)

local flag //Part flag

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 107

local typeObject /// Part type

local point = {0,0,0} //Part coordinate（X,Y,R）

while true do

Go(P1,"Speed=100 Accel=100 SYNC=1") // Wait point

print("Test")

while true do

flag,typeObject,point = GetCnvObject(0,0) //Check whether there is a part. If there is a part, exit this

loop

if flag == true then

break

end

Sleep(20)

end

SyncCnv(0) //Synchronize the conveyor and start to track

Move(P2,"SpeedS=100 AccelS=100") // Tracking point

Move(P3,"SpeedS=100 AccelS=100") // Pickup point

Wait(100)

DO(1,1) // Active air pump and pick up part

DO(2,1)

Wait(100)

Move(P4,"SpeedS=100 AccelS=100 SYNC=1") // Lifting point

StopSyncCnv() // Stop conveyor tracking

Sleep(20)

Go(P5,"Speed=100 Accel=100") // Point above the placing point

Go(P6,"Speed=100 Accel=100 SYNC=1") // Placing point

Sleep(1000)

DO(1,0) // Close air pump

DO(2,0,"SYNC=1")

Sleep(1000)

Go(P5,"SpeedS=100 AccelS=100")

end

 Palletizing

 Overview

In carrying applications, some parts are regularly arranged with uniform spacing and teaching

part positions one by one results in a high error and poor efficiency. Palletizing process can resolve

these problems.

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 108

A full palletizing process includes pallet parameters setting and pallet programming. After you

set the pallet parameters on DobotSCStdudio, the generated configuration file will be imported to

the robot system automatically, then you can write a pallet program by calling pallet API based on

site requirements.

 Setting Pallet

Pallet parameter settings include basic parameter setting and path point setting. Basic

parameter setting is to set pallet name, stack number, palletizing direction and stack spacing. Path

points are the configured points on the assembly path or dismantling path.

 Transition point (point A): A point the robot must move to when assembling or

dismantling stacks, which is fixed or varies with the pallet layer.

 Preparation point (point B): A point calculated by the target point and the set offset.

 Target point (point C): The first stack point.

Figure 3.24 and Figure 3.25 show the assembly path and dismantling path.

Figure 3.24 Assembly path

Figure 3.25 Dismantling path

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 109

Stack indicates parts or products to be carried. Pallet indicates an object which places the

stacks. Assembling stack indicates that the robot places stacks to the pallet as the configured pallet

type. Dismantling stack indicates that the robot takes out stacks from the pallet as the configured

pallet type. Pallet type indicates the layout of all stacks placed on the pallet. In our robot system,

only the matrix pallet is supported, on which the stacks are placed in regular intervals, as shown in

Figure 3.26.

Figure 3.26 Matrix pallet

In this topic, we describe how to set pallet parameters.

Prerequisites

 The robot has been powered on.

 The suction cup or gripper kit has been mounted on the robot

 (Optional) The User coordinate system has been set on the pallet. When teaching

positions, you can select the set User coordinate system based on site requirements.

Procedure

The pallet page is displayed, as shown in Figure 3.27.

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 110

Figure 3.27 Pallet page

Table 3.5 shows the basic pallet parameter description.

Table 3.5 Basic pallet parameter description

Parameter Description

Name Pallet name

Direction Palletizing direction

Value: X->Y->Z or Y->X->Z

In this topic, we select X->Y->Z

Count Number of stacks in X, Y, Z direction respectively

Distance Stack interval in X, Y, Z direction respectively

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 111

Figure 3.28 Teach the first stack position

If Variation with layer height is selected, the transition point is varied with the

pallet layer. If not, it is the fixed point.

Figure 3.29 Teach the transition point

 DobotSCStudio User Guide 3 Process Guide

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 112

 Example

After setting the pallet parameters, you can call pallet API for programming. This topic takes

stack assembly as an example to describe.

Program 3.2 Stack assembly demo

local MPpick = MatrixPallet(0, "IsUnstack=true Userframe=8") // Define the pallet instance

Reset(MPpick) // Initial the pallet instance

while true do

MoveIn(MPpick,"velAB=90 velBC=50") // Start to assemble

MoveOut(MPpick)

result=IsDone(MPpick)

if (result == true) // Check whether stack assembly is

complete

then

print("EXIT ...")

break

end

end

Release(MPpick) // Release pallet instance

 DobotSCStudio User Guide 4 Typical Applications

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 113

 Typical Applications

 Modbus Application

A robot can communicate with external equipment by the Modbus protocol. Here, External

equipment such as a PLC is set as the Modbus master, and the robot system is set as the salve.

This topic takes a PLC as an example to control the robot by reading and writing related

registers. The typical connection is shown in Figure 4.1.

Figure 4.1 Typical connection

The IP address of the robot system must be in the same network segment of the external

equipment without conflict. You can modify the IP address on the Config> NetworkSetting page;

the default port is 502 and cannot be modified.

Figure 4.2 shows the program process and Program 4.1 shows the corresponding demo.

NOTE

 The registers mentioned in Figure 4.2 are the robot system’s registers. The

corresponding registers of PLC are shown in 2.15.1 Modbus Register Description.

 This topic only describes the program demo of the robot system. The details on the

program of PLC are not described in this topic.

 DobotSCStudio User Guide 4 Typical Applications

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 114

Figure 4.2 Program process

Program 4.1 Slave program demo

local data = {1}

 DobotSCStudio User Guide 4 Typical Applications

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 115

local data2 = {1}

local coil = {}

local RST = {0}

while true

do

coil = GetCoils(1000,1)

if coil[1] == 1 then

Go(P1,"SYNC=1")

Sleep(1000)

SetCoils(1001, 1, data)

while true do

Sleep(1000)

data2 = GetHoldRegs(1000,1)

if data2[1] == 666 then

Go(P2,"SYNC=1")

SetHoldRegs(1001,#data,data2,"U16")

Sleep(1000)

Go(P3,"SYNC=1")

SetCoils(1000, 1, RST)

SetCoils(1001, 1, RST)

SetHoldRegs(1000,1,RST,"U16")

coil = {0}

data2 = {0}

break

end

end

end

end

 I/O Application

 Grabbing Bottle Application

This topic takes a six-axis robot as an example to describe how to grab bottles. The full process

includes bottle transportation, bottle grabbing, box covering, and box transportation. The bottle and

box transportation is completed by the conveyor and PLC. Bottle grabbing is completed by the

robot. In this topic, we only describe how to grab, as shown in Figure 4.3.

 DobotSCStudio User Guide 4 Typical Applications

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 116

Figure 4.3 Application scene

Table 4.1 lists the positions where the robot will move to.

Table 4.1 Position description

Position Description

P1 Safe position

P2 Bottle grabbing transition position

P3 Position closed to the bottle grabbing position

P4 Bottle grabbing position

P5，P7，P9，P11 Position above the placing position

P6，P8，P10，P12 Placing position

P13 Lid grabbing transition position

P14 Lid grabbing position

P15 Position above the lid grabbing position

P16 Position above the lid covering position

P17 Lid covering position

Each time the robot performs a task, it sends a signal to the PLC to identify the task that needs

to be completed so that the PLC can perform the related work. Table 4.2 lists the signal descriptions.

Table 4.2 User-defined digital signal description

Digital signal Description

Input

DI2 Allow to grab a bottle

 DobotSCStudio User Guide 4 Typical Applications

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 117

Digital signal Description

DI3 Allow to grab a lid

Output

DO7 Return to the safe position

DO8 Complete bottle grabbing

DO9 Cover a lid

DO17 Grab a bottle

DO18，DO19 Grab a lid

Figure 4.4 shows the detailed process.

 DobotSCStudio User Guide 4 Typical Applications

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 118

Figure 4.4 Grabbing bottle process

 Program 4.2 Grabbing bottle demo

local bottleNum = 4

local readyPos=P1 --Safe position

 DobotSCStudio User Guide 4 Typical Applications

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 119

local bottleLoadingPos=P4 --Bottle grabbing position

local bottleUnloadingPosup ={P5, P7, P9, P11}

local bottleUnloadingPos ={P6, P8, P10, P12}

local boxLoadingPos = P14 -- Lid grabbing position

local boxUnloadingPos = P17 -- Lid covering position

while true do

for bottleIndex = 1, bottleNum do

Go(readyPos,"Speed=100 Accel=100")

DOExecute(7,1)

Wait(1000)

while true do --Grab bottle signal

Sleep(500)

input = DI(2,1)

if input == 1 then

break

end

end

DOExecute(7,0)

Wait(500)

Go(P2,"Speed=100 Accel=100 SYNC=1") -- Bottle grabbing transition position

Move(P3,"Speed=100 Accel=100 SYNC=1") --Above the bottle

Move(bottleLoadingPos," Speed=100 Accel=100 SYNC=1") --Grab bottle position

DOExecute(17,1) --Grabbing signal

Wait(500)

Move(P3,"Speed=100 Accel=100 SYNC=1") --Above the bottle

Go(P1,"Speed=100 Accel=100 SYNC=1") --Transition position

Go(bottleUnloadingPosup[bottleIndex],"Speed=100 Accel=100 SYNC=1") --Above the bottle

Move(bottleUnloadingPos[bottleIndex],"Speed=100 Accel=100 SYNC=1") --Bottle location

DOExecute(17,0) --Grabbing signal

Wait(500)

Move(bottleUnloadingPosup[bottleIndex],"Speed=100 Accel=100 SYNC=1")

DOExecute(8,1) --Grab the bottle to complete the signal

Wait(1000)

DOExecute(8,0)

end

Go(readyPos,"Speed=100 Accel=100 SYNC=1") --Safe position

while true do -- Grab the lid signal

 DobotSCStudio User Guide 4 Typical Applications

Issue V1.0 (2020-06-03) User Guide Copyright © Yuejiang Technology Co., Ltd

 120

Sleep(1000)

input = DI(3,1)

if input == 1 then

break

end

end

Go(P13,"Speed=100 Accel=100 SYNC=1") --Transition position

Move(P15,"Speed=100 Accel=100 SYNC=1") --Grab the lid transition position

Move(boxLoadingPos," Speed=100 Accel=100 SYNC=1") --Grab the lid

DOExecute(18,1) --Grabbing signal

DOExecute(19,1) --Grabbing signal

Wait(500)

Move(P15,"Speed=100 Accel=100 SYNC=1") --Grab the lid transition position

Move(P16,"Speed=100 Accel=100 SYNC=1") --Cover the box and cover it transition position

Move(boxUnloadingPos,"Speed=10 Accel=10 SYNC=1") --Cover the box and cover it

DOExecute(18,0)

DOExecute(19,0)

Wait(500)

DOExecute(9,1)

Wait(500)

Move(P16,"Speed=100 Accel=100 SYNC=1") --Cover the box and cover it transition position

Go(readyPos,"Speed=100 Accel=100 SYNC=1") --Safe position

DOExecute(9,0)

Wait(500)

end

	1. Function Description
	1.1 Overview
	1.1.1 Main Interface Description

	1.2 Settings
	1.2.1 Setting Motion Parameter
	1.2.2 Setting User Coordinate System
	1.2.2.1 Setting User Coordinate System of SCARA Robot
	1.2.2.2 Setting User Coordinate System of 6-axis Robot

	1.2.3 Setting Tool Coordinate System
	1.2.3.1 Setting Tool Coordinate System of SCARA Robot
	1.2.3.2 Setting Tool Coordinate System of 6-axis Robot

	1.2.4 Homing
	1.2.4.1 Homing of SCARA Robot
	1.2.4.2 Homing of 6-axis Robot

	1.2.5 Calibration
	1.2.6 VirtualRobot
	1.2.7 Log
	1.2.8 Language
	1.2.9 Network Service

	1.3 Monitor
	1.3.1 I/O Monitor

	1.4 Remote Control
	1.4.1 Remote I/O
	1.4.2 Remote Modbus

	1.5 Programming
	1.5.1 Project Description
	1.5.2 Programming Interface Description
	1.5.3 Programming Description
	1.5.3.1 Creating Project
	1.5.3.2 Teaching points
	1.5.3.3 Writing a Program
	1.5.3.4 Debugging Program

	1.6 Enabling
	1.7 Setting Global Velocity Rate
	1.8 Alarm Description

	2. Program Language
	2.1 Arithmetic Operators
	2.2 Relational Operator
	2.3 Logical Operators
	2.4 General Keywords
	2.5 General Symbol
	2.6 Processing Control Commands
	2.7 Global Variable
	2.8 Motion Commands
	2.9 Motion Parameter Commands
	2.10 Input/output Commands
	2.11 Program Managing Commands
	2.12 Pose Getting Command
	2.13 TCP
	2.14 UDP
	2.15 Modbus
	2.15.1 Modbus Register Description
	2.15.2 Command Description

	2.16 ECP
	2.17 Process Command
	2.17.1 Conveyor Tracking Command
	2.17.2 Pallet Commands

	3. Process Guide
	3.1 Conveyor Tracking
	3.1.1 Overview
	3.1.2 Building Environment
	3.1.2.1 Encoder
	3.1.2.2 Photoelectric Sensor
	3.1.2.3 Vision System

	3.1.3 Calibrating Conveyor
	3.1.4 Configuring Conveyor
	3.1.5 Example
	3.1.5.1 Pickup Example Using Vision Conveyor Tracking

	3.2 Palletizing
	3.2.1 Overview
	3.2.2 Setting Pallet
	3.2.3 Example

	4. Typical Applications
	4.1 Modbus Application
	4.2 I/O Application
	4.2.1 Grabbing Bottle Application

