ALARM Description

Dobot M1 ALARM Description

issue: V1.0 Date: 2019-06-30

Shenzhen Yuejiang Technology Co., Ltd

Copyright © ShenZhen Yuejiang Technology Co., Ltd 2019. All rights reserved.

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Yuejiang Technology Co., Ltd

Disclaimer

To the maximum extent permitted by applicable law, the products described (including its hardware, software and firmware, etc.) in this document are provided AS IS, which may have flaws, errors or faults. Yuejiang makes no warranties of any kind, express or implied, including but not limited to, merchantability, satisfaction of quality, fitness for a particular purpose and non-infringement of third party rights. In no event will Yuejiang be liable for any special, incidental, consequential or indirect damages resulting from the use of our products and documents.

Before using our product, please thoroughly read and understand the contents of this document and related technical documents that are published online, to ensure that the robotic arm is used on the premise of fully understanding the robotic arm and related knowledge. Please use this document with technical guidance from professionals. Even if follow this document or any other related instructions, Damages or losses will be happen in the using process, Dobot shall not be considered as a guarantee regarding to all security information contained in this document.

The user has the responsibility to make sure following the relevant practical laws and regulations of the country, in order that there is no significant danger in the use of the robotic arm.

Shenzhen Yuejiang Technology Co., Ltd

Address: 3F, Building NO.3, Tongfuyu Industrial Town, Nanshan District, Shenzhen, China Website: <u>www.dobot.cc</u>

Issue V1.0 (2019-06-30) ALARM Description Copyright © Yuejiang Technology Co., Ltd

Preface

Purpose

This document describes the alarms of Dobot M1 and provides the solutions to clear alarm.

Intended Audience

This document is intended for:

- Customer Engineer
- Installation and Commissioning Engineer
- Technical Support Engineer

Change History

Date	Description
2019/06/30	The first release

i

Contents

Pre	eface		i
Co	ntent	S	ii
1. <i>A</i>	ALA]	RM Description	1
	1.1	Getting the Alarm Status of System	1
	1.2	Clearing All Alarms	1
	1.3	Alarm Content	1
	1.4	Alarm Index Calculation Description	6
2. I	Plann	ed Alarm	7
	2.1	Inverse Kinematics Singularity Alarm	7
	2.2	No Inverse Kinematics Solution Alarm	7
	2.3	Inverse Kinematics Limit Alarm	8
	2.4	Data Repeatability Alarm	8
	2.5	Input Parameter Error Alarm in ARC Mode	9
	2.6	JUMP Parameter Error Alarm	9
	2.7	Arm Orientation Error Alarm	.10
	2.8	Planned Point Out of Range of Workspace in MOVL Mode	.10
	2.9	Planned Point Out of Range of Workspace in ARC Mode	. 11
	2.10	Motion Command Error Alarm	. 11
	2.11	Speed Parameter Error Alarm	.12
	2.12	Planned Trajectory Error in CP Mode	.12
3. I	Motic	on Alarm	14
	3.1	Inverse Kinematics Solution Singularity Alarm	.14
	3.2	No Inverse Kinematics Solution Alarm	.14
	3.3	Inverse Kinematics Limit Alarm	.15
4. ()ver-	speed Alarm	16
	4.1	Over-speed Alarm of Joint1	.16
	4.2	Over-speed Alarm of Joint2	.16
	4.3	Over-speed Alarm of Joint3	.16
	4.4	Over-speed Alarm of Joint4	.17
5. I	Limit	Alarm	18
	5.1	Positive Limit Alarm of Joint1	.18
	5.2	Negative Limit Alarm of Joint1	.18
	5.3	Positive Limit Alarm of Joint2	.18
	5.4	Negative Limit Alarm of Joint2	.18
	5.5	Positive Limit Alarm of Joint3	.18
	5.6	Negative Limit Alarm of Joint3	.19
	5.7	Positive Limit Alarm of Joint4	.19
	5.8	Negative Limit Alarm of Joint4	.19
	5.9	Rear Arm and Forearm Machine-Limit Alarm	.19
	5.10	Lost-step Alarm	.20
	5.11	Other Alarms in Controller	.20
	Issue	V1.0 (2019-06-30) ALARM Description Copyright © Yuejiang Technology Co.,	Ltd

6. F	Rear	Arm Motor Alarm	.21
	6.1	Multi-turn Number Abnormal Alarm Description of Rear Arm Encoder	21
	6.2	High Temperature Alarm of Rear Arm Driver Board	21
	6.3	Low Temperature Alarm of Rear Arm Driver Board	22
	6.4	Motor-locked Alarm of Rear Arm Driver Board	22
	6.5	High DC Bus Voltage of Rear Arm Driver Board	22
	6.6	Low DC Bus Voltage of Rear Arm Driver Board	23
	6.7	IIT Alarm of Rear Arm Driver Board	23
	6.8	Over-speed Alarm of Rear Arm Driver Board	24
	6.9	Low Battery Capacity of Rear Arm Encoder	24
	6.10	Phase-lack Alarm of Rear Arm Motor	25
	6.11	Wrong Phase Alarm of Rear Arm Motor	25
	6.12	Lost-speed Alarm of Rear Arm Driver Board	25
	6.13	Angle Self-learning Alarm of Rear Arm Driver Board	26
	6.14	Calibration Alarm of Rear Arm Encoder	26
	6.15	CAN Communication Interruption Alarm of Rear Arm	27
7. F	orea	rm Motor Alarm	.28
	7.1	Multi-turn Number Abnormal Alarm Description of Forearm Encoder	28
	7.2	High Temperature Alarm of Forearm Driver Board	28
	7.3	Low Temperature Alarm of Forearm Driver Board	29
	7.4	Motor-locked Alarm of Forearm Driver Board	29
	7.5	High DC Bus Voltage of Forearm Driver Board	29
	7.6	Low DC Bus Voltage of Forearm Driver Board	30
	7.7	IIT Alarm of Forearm Driver Board	30
	7.8	Over-speed Alarm of Forearm Driver Board	31
	7.9	Low Battery Capacity of Forearm Encoder	31
	7.10	Phase-lack Alarm of Forearm Motor	32
	7.11	Wrong Phase Alarm of Forearm Motor	32
	7.12	Lost-speed Alarm of Forearm Driver Board	32
	7.13	Angle Self-learning Alarm of Forearm Driver Board	33
	7.14	Calibration Alarm of Forearm Encoder	33
	7.15	CAN Communication Interruption Alarm of Forearm	34
8. Z	Z-axi	s Motor Alarm	.35
	8.1	Multi-turn Number Abnormal Alarm Description of Z-axis Encoder	35
	8.2	High Temperature Alarm of Z-axis Driver Board	35
	8.3	Low Temperature Alarm of Z-axis Driver Board	36
	8.4	Motor-locked Alarm of Z-axis Driver Board	36
	8.5	High DC Bus Voltage of Z-axis Driver Board	37
	8.6	Low DC Bus Voltage of Z-axis Driver Board	37
	8.7	IIT Alarm of Z-axis Driver Board	37
	8.8	Over-speed Alarm of Z-axis Driver Board	38
	8.9	Low Battery Capacity of Z-axis Encoder	38
	8.10	Phase-lack Alarm of Z-axis Motor	39
	8.11	Wrong Phase Alarm of Z-axis Motor	39
	Issue	V1.0 (2019-06-30) ALARM Description Copyright © Yueijang Technology Co.,	Ltd

	8.12	Lost-speed Alarm of Z-axis Driver Board	.40
	8.13	Angle Self-learning Alarm of Z-axis Driver Board	.40
	8.14	Calibration Alarm of Z-axis Encoder	.41
	8.15	CAN Communication Interruption Alarm of Z-axis	.41
9. F	R-axi	s Motor Alarm	.43
	9.1	Multi-turn Number Abnormal Alarm Description of R-axis Encoder	.43
	9.2	High Temperature Alarm of R-axis Driver Board	.43
	9.3	Low Temperature Alarm of R-axis Driver Board	.44
	9.4	Motor-locked Alarm of R-axis Driver Board	.44
	9.5	High DC Bus Voltage of R-axis Driver Board	.44
	9.6	Low DC Bus Voltage of R-axis Driver Board	.45
	9.7	IIT Alarm of R-axis Driver Board	.45
	9.8	Over-speed Alarm of R-axis Driver Board	.46
	9.9	Low Battery Capacity of R-axis Encoder	.46
	9.10	Phase-lack Alarm of R-axis Motor	.47
	9.11	Wrong Phase Alarm of R-axis Motor	.47
	9.12	Lost-speed Alarm of R-axis Driver Board	.47
	9.13	Angle Self-learning Alarm of R-axis Driver Board	.48
	9.14	Calibration Alarm of R-axis Encoder	.48
	9.15	CAN Communication Interruption Alarm of R-axis	.49
10.	I/O	Alarm of End-effector	.50
	10.1	I/O Abnormality Alarm of End-effector	.50
	10.2	RS485 Communication Alarm of End-effector I/O Interface	.50
	10.3	CAN Communication Interruption Alarm of End-effector I/O Interface	.50
11.	Oth	er Alarms	.52
	11.1	Emergency Stop Alarm	52

1. ALARM Description

1.1 Getting the Alarm Status of System

 Table 1.1
 The description of getting system alarm

Prototype	int GetAlarmsState(uint8_t *alarmsState, uint32_t *len, unsigned int maxLen)			
Description	Get the alarm status of system			
Parameter	alarmsState: The first address of the array. Each byte in the array alarmsState identifies			
	the alarms status of the eight alarm items, with the MSB (Most Significant Bit) at the top			
	and LSB (Least Significant Bit) at the bottom			
	len: The byte occupied by the alarm			
	maxLen: Maximum array length, to avoid overflow			
return	DobotCommunicate_NoError: The command returns with no error			
	DobotCommunicate_Timeout: The command does not return, resulting in a timeout			

NOTE

Each byte in the array **alarmsState** identifies the alarms status of the eight alarm items, with the MSB (Most Significant Bit) at the top and LSB (Least Significant Bit) at the bottom.

1.2 Clearing All Alarms

Table 1.2 Clear all alarms

Prototype	int ClearAllAlarmsState(void)	
Description	Clear all alarms	
Parameter	None	
return	DobotCommunicate_NoError: The command returns a value with no error	
	DobotCommunicate_Timeout: The command does not return any value, resulting in a	
	timeout	

1.3 Alarm Content

enum {

// Common error

 $ERR_COMMON_MIN = 0x00,$

ERR_COMMON_RESET = ERR_COMMON_MIN,

 $ERR_COMMON_MAX = 0x0f,$

// Plan error

 $ERR_PLAN_MIN = 0x10,$

ERR_PLAN_INV_SINGULARITY = ERR_PLAN_MIN,

Issue V1.0 (2019-06-30) ALARM Description Copyright © Yuejiang Technology Co., Ltd

ERR_PLAN_INV_CALC, ERR_PLAN_INV_LIMIT, ERR_PLAN_PUSH_DATA_REPEAT, ERR_PLAN_ARC_INPUT_PARAM, ERR_PLAN_JUMP_PARAM, ERR_PLAN_LINE_HAND, ERR_PLAN_LINE_OUT_SPACE, ERR_PLAN_ARC_OUT_SPACE, ERR_PLAN_MOTIONTYPE, ERR_PLAN_SPEED_INPUT_PARAM, ERR_PLAN_CP_CALC,

 $ERR_PLAN_MAX = 0x1f,$

// Move error ERR_MOVE_MIN = 0x20, ERR_MOVE_INV_SINGULARITY = ERR_MOVE_MIN, ERR_MOVE_INV_CALC, ERR_MOVE_INV_LIMIT,

 $ERR_MOVE_MAX = 0x2f,$

// Over speed error

ERR_OVERSPEED_MIN = 0x30, ERR_OVERSPEED_AXIS1 = ERR_OVERSPEED_MIN, ERR_OVERSPEED_AXIS2, ERR_OVERSPEED_AXIS3, ERR_OVERSPEED_AXIS4,

 $ERR_OVERSPEED_MAX = 0x3f,$

// Limit error ERR_LIMIT_MIN = 0x40, ERR_LIMIT_AXIS1_POS = ERR_LIMIT_MIN, ERR_LIMIT_AXIS1_NEG,

ERR_LIMIT_AXIS2_POS,

Issue V1.0 (2019-06-30) ALARM Description

Copyright © Yuejiang Technology Co., Ltd

ERR_LIMIT_AXIS2_NEG,

ERR_LIMIT_AXIS3_POS, ERR_LIMIT_AXIS3_NEG,

ERR_LIMIT_AXIS4_POS, ERR_LIMIT_AXIS4_NEG,

ERR_LIMIT_AXIS23_POS, ERR_LIMIT_AXIS23_NEG,

//ERR_LIMIT_SINGULARITY,

 $ERR_LIMIT_MAX = 0x4f,$

// Lose Step error ERR_LOSE_STEP_MIN = 0x50, ERR_LOSE_STEP_AXIS1 = ERR_LOSE_STEP_MIN, ERR_LOSE_STEP_AXIS2,

ERR_LOSE_STEP_AXIS3, ERR_LOSE_STEP_AXIS4,

 $ERR_LOSE_STEP_MAX = 0x5f,$

// Other error ERR_OTHER_MIN = 0x60, ERR_OTHER_AXIS1_DRV_ALARM = ERR_OTHER_MIN, ERR_OTHER_AXIS1_OVERFLOW, ERR_OTHER_AXIS1_FOLLOW,

ERR_OTHER_AXIS2_DRV_ALARM, ERR_OTHER_AXIS2_OVERFLOW, ERR_OTHER_AXIS2_FOLLOW,

ERR_OTHER_AXIS3_DRV_ALARM, ERR_OTHER_AXIS3_OVERFLOW,

Issue V1.0 (2019-06-30)

ALARM Description

n Copyright © Yuejiang Technology Co., Ltd

ERR_OTHER_AXIS3_FOLLOW,

ERR_OTHER_AXIS4_DRV_ALARM, ERR_OTHER_AXIS4_OVERFLOW, ERR_OTHER_AXIS4_FOLLOW,

 $ERR_OTHER_MAX = 0x6f,$

 $ERR_MOTOR_REAR_MIN = 0x70,$ ERR_MOTOR_REAR_ENCODER = ERR_MOTOR_REAR_MIN, ERR_MOTOR_REAR_TEMPERATURE_HIGH, ERR_MOTOR_REAR_TEMPERATURE_LOW, ERR_MOTOR_REAR_LOCK_CURRENT, ERR_MOTOR_REAR_BUSV_HIGH, ERR_MOTOR_REAR_BUSV_LOW, ERR_MOTOR_REAR_OVERHEAT, ERR_MOTOR_REAR_RUNAWAY, ERR_MOTOR_REAR_BATTERY_LOW, ERR_MOTOR_REAR_PHASE_SHORT, ERR_MOTOR_REAR_PHASE_WRONG, ERR_MOTOR_REAR_LOST_SPEED, ERR_MOTOR_REAR_NOT_STANDARDIZE, ERR_ENCODER_REAR_NOT_STANDARDIZE, ERR MOTOR REAR CAN BROKE,

 $ERR_MOTOR_REAR_MAX = 0x7f,$

ERR_MOTOR_FRONT_MIN = 0x80, ERR_MOTOR_FRONT_ENCODER = ERR_MOTOR_FRONT_MIN, ERR_MOTOR_FRONT_TEMPERATURE_HIGH, ERR_MOTOR_FRONT_TEMPERATURE_LOW, ERR_MOTOR_FRONT_LOCK_CURRENT, ERR_MOTOR_FRONT_BUSV_HIGH, ERR_MOTOR_FRONT_BUSV_LOW, ERR_MOTOR_FRONT_OVERHEAT, ERR_MOTOR_FRONT_OVERHEAT, ERR_MOTOR_FRONT_RUNAWAY, ERR_MOTOR_FRONT_BATTERY_LOW,

Issue V1.0 (2019-06-30) ALARM Description

iption Copyright © Yuejiang Technology Co., Ltd

ERR_MOTOR_FRONT_PHASE_SHORT, ERR_MOTOR_FRONT_PHASE_WRONG, ERR_MOTOR_FRONT_LOST_SPEED, ERR_MOTOR_FRONT_NOT_STANDARDIZE, ERR_ENCODER_FRONT_NOT_STANDARDIZE, ERR_MOTOR_FRONT_CAN_BROKE, ERR_MOTOR_FRONT_MAX = 0x8f,

 $ERR_MOTOR_Z_MIN = 0x90,$ ERR_MOTOR_Z_ENCODER = ERR_MOTOR_Z_MIN, ERR_MOTOR_Z_TEMPERATURE_HIGH, ERR_MOTOR_Z_TEMPERATURE_LOW, ERR_MOTOR_Z_LOCK_CURRENT, ERR_MOTOR_Z_BUSV_HIGH, ERR_MOTOR_Z_BUSV_LOW, ERR_MOTOR_Z_OVERHEAT, ERR_MOTOR_Z_RUNAWAY, ERR_MOTOR_Z_BATTERY_LOW, ERR_MOTOR_Z_PHASE_SHORT, ERR_MOTOR_Z_PHASE_WRONG, ERR_MOTOR_Z_LOST_SPEED, ERR_MOTOR_Z_NOT_STANDARDIZE, ERR_ENCODER_Z_NOT_STANDARDIZE, ERR MOTOR Z CAN BROKE, $ERR_MOTOR_Z_MAX = 0x9f,$

ERR_MOTOR_R_MIN = 0xA0, ERR_MOTOR_R_ENCODER = ERR_MOTOR_R_MIN, ERR_MOTOR_R_TEMPERATURE_HIGH, ERR_MOTOR_R_TEMPERATURE_LOW, ERR_MOTOR_R_LOCK_CURRENT, ERR_MOTOR_R_BUSV_HIGH, ERR_MOTOR_R_BUSV_LOW, ERR_MOTOR_R_OVERHEAT, ERR_MOTOR_R_RUNAWAY, ERR_MOTOR_R_BATTERY_LOW, ERR_MOTOR_R_PHASE_SHORT,

Issue V1.0 (2019-06-30)

ERR_MOTOR_R_PHASE_WRONG, ERR_MOTOR_R_LOST_SPEED, ERR_MOTOR_R_NOT_STANDARDIZE, ERR_ENCODER_R_NOT_STANDARDIZE, ERR_MOTOR_R_CAN_BROKE, ERR_MOTOR_R_MAX = 0xAf,

ERR_MOTOR_ENDIO_MIN = 0xB0, ERR_MOTOR_ENDIO_IO = ERR_MOTOR_ENDIO_MIN, ERR_MOTOR_ENDIO_RS485_WRONG, ERR_MOTOR_ENDIO_CAN_BROKE, ERR_MOTOR_ENDIO_MAX = 0xBf,

 $ERR_ERROR_MAX = ALARMS_BITS - 1$

};

1.4 Alarm Index Calculation Description

Table 1.3	Alarm Index	Calculation	description
10010 1.5	I main mack	Culculation	description

Alarm command	0x AA AA 02 14 00 EC	
	Protocol command consists of packet header, payload length, payload	
	frame, and check.	
	AAAA: Packet header	
	02: Payload length	
	14: ID Payload ID	
	00: Payload data(read\write status and queue command status)	
	EC: Check	
Returned command	0x AA AA 12 14 00 00 00 00 00 00 00 00 00 00 00 00 00	
Analysis process	In the returned command, 00 00 00 00 00 00 00 00 00 00 00 00 00	
	00 is an array with 16 bytes. One byte identifies eight alarm items, and the	
	payload frame uses little endian mode, we should calculate alarm index by	
	little endian mode	
	Binary : 0x 0000000000001000000000000	
	When alarm item is 1, this means there is an alarm. So we can calculate	
	that the first alarm is at the 67 th bit. Transform decimal to hex: 0x43	
Analysis result	0x43: Joint 2 negative limitation alarm	

Issue V1.0 (2019-06-30)

2. Planned Alarm

2.1 Inverse Kinematics Singularity Alarm

Table 2.1 Inverse kinematics singularity alarm description

Index	0x10	
Trigger condition	The planned target point (starting point or end point) is at the singular position	
	where the joint angle of Forearm ranges from -20 $^\circ$ to 20 $^\circ$, resulting in an inverse	
	kinematics solution error	
Reset condition	Clear the alarm	

NOTE

Inverse kinematics solution is to obtain each joint angle based on the robot pose in the Cartesian space.

Description

The planned target point (starting point or end point) is at the singular position where the joint angle of Forearm ranges from -20° to 20° , resulting in an inverse kinematics solution error.

Reason

- The planned target point is at the singular position in MOVL mode.
- The planned middle point or the target point is at the singular position in ARC mode.
- The planned target point is at the singular position in CP mode.
- The planned target point is at the singular position in JUMP_MOVL mode.

Solution

- 1) Check whether the target point is at the singular point. Modify and resave it.
- 2) Click ClearAlarm.

2.2 No Inverse Kinematics Solution Alarm

Table 2.2	No inverse	kinematics	solution	alarm	description
-----------	------------	------------	----------	-------	-------------

Index	0x11
Trigger condition	The planned target point is out of range of the workspace, resulting in that there is
	no inverse kinematics solution
Reset condition	Clear the alarm

Description

The planned target point is out of range of the workspace, resulting in that there is no inverse kinematics solution.

Reason

Issue V1.0 (2019-06-30) ALARM Description Copyright © Yuejiang Technology Co., Ltd

The planned target point is out of range of the workspace in all modes.

Solution

1) Check whether the target point is out of range of the workspace. Modify and resave it.

For details about the workspace of Dobot M1, please see Dobot M1 User Guide.

2) Click ClearAlarm.

2.3 Inverse Kinematics Limit Alarm

Table 2.3	Inverse	kinematics	limit alarm

Index	0x12
Trigger condition	The inverse kinematics solution calculated according to the planned target point is
	greater than the specified joint angle
Reset condition	Clear the alarm

Description

The inverse kinematics solution calculated according to the planned target point is greater than the specified joint angle.

Reason

The inverse kinematics solution calculated according to the planned target point is greater than the specified joint angle in all modes.

Solution

1) Check whether the joint angle of the target point is greater than the specified joint angle. Modify and resave it.

Table 2.4	Joint limit	description
-----------	-------------	-------------

Joint	Negative Limit	Positive Limit
J1	-85 °	85 °
J2	-135 °	135 °
J3	10mm	235mm
J4	-360 °	360 °

2) Click ClearAlarm.

2.4 Data Repeatability Alarm

Issue V1.0 (2019-06-30) Al

ALARM Description

Copyright © Yuejiang Technology Co., Ltd

Table 2.5 Data repeatability alarm description

Index	0x13
Trigger condition	The planed points are the same in ARC or JUMP_MOVL mode
Reset condition	Clear the alarm

Description

The planed points are the same in ARC or JUMP_MOVL mode.

Reason

- Any two of the three points of the arc are coincided in ARC mode.
- The starting point and the end point are the same in JUMP_MOVL mode.

Solution

1) Check whether the points are the same. Modify and resave them.

2) Click ClearAlarm.

2.5 Input Parameter Error Alarm in ARC Mode

 Table 2.6
 Input parameter error alarm description in ARC mode

Index	0x14
Trigger condition	The planned middle point and the planned end point cannot form an arc
Reset condition	Clear the alarm

Description

The planned middle point and the planned end point cannot form an arc.

Reason

The three points in ARC mode are the same or in a line.

Solution

1) Check whether the saved points are the same or in a line. Modify and resave them.

2) Click ClearAlarm.

2.6 JUMP Parameter Error Alarm

 Table 2.7
 JUMP parameter error alarm description

Index	0x15
Trigger condition	The Height, Limit parameters are wrong
Reset condition	Clear the alarm

Description

Issue V1.0 (2019-06-30)

The **Height**, **Limit** parameters are wrong.

Reason

- **Limit** is higher than the maximum height (235 mm).
- **Limit** is lower than the minimum height (10 mm).
- **Limit** is lower than 0.

Solution

- 1) Check the JUMP parameters, and reset them.
- 2) Click ClearAlarm.

2.7 Arm Orientation Error Alarm

Table 2.8	Arm orientation	error alarm	description
1 able 2.0	AIIII OIICIItatioii	enor alarm	description

Index	0x16
Trigger condition	The arm orientations of the starting point and the end point are different in MOVL, ARC, CP or JUMP_MOVL mode, resulting in that the trajectory will go through the singular position
Reset condition	Clear the alarm

Description

The arm orientations of the starting point and the end point are different in MOVL, ARC, CP or JUMP_MOVL mode, resulting in that the trajectory will go through the singular position.

Reason

- The arm orientations of the starting point and the end point are different in MOVL mode.
- The arm orientations of the starting point and the end point are different in ARC mode.
- The arm orientations of the starting point and the end point are different in CP mode.
- The arm orientations of the starting point and the end point are different in JUMP_MOVL mode.

Solution

- 1) Check the arm orientations of the two saved points, and ensure that the arm orientations are the same.
- 2) Click ClearAlarm.

2.8 Planned Point Out of Range of Workspace in MOVL Mode

 Table 2.9
 Planned point out of range of workspace in MOVL mode

Index	0x17
Trigger condition	The planned point is out of range of the workspace in MOVL mode

Issue V1.0 (2019-06-30)

ALARM Description Copyright © Yuejiang Technology Co., Ltd

Reset condition Clear the alarm

Description

The planned point is out of range of the workspace in MOVL mode.

Reason

The planned trajectory is out of range of the workspace in MOVL mode.

Solution

- 1) Check whether the planned trajectory from the starting point to the end point is out of range of the workspace. Modify and resave it.
- 2) Click ClearAlarm.

2.9 Planned Point Out of Range of Workspace in ARC Mode

Table 2.10 Planned point out of range of workspace in ARC mode

Index	0x18
Trigger condition	The planned point is out of range of the workspace in ARC mode
Reset condition	Clear the alarm

Description

The planned point is out of range of the workspace in ARC mode.

Reason

The planned trajectory is out of range of the workspace in ARC mode

Solution

 Check whether the planned trajectory in ARC mode is out of range of the workspace. Modify and resave it.

2) Click ClearAlarm.

2.10 Motion Command Error Alarm

Table 2.11 Motion command error alarm description

Index	0x19
Trigger condition	The motion command is unknown
Reset condition	Clear the alarm

Description

Issue V1.0 (2019-06-30)

0) ALARM Description Copyright © Yuejiang Technology Co., Ltd

The motion command is unknown.

Reason

The motion command is not provided by the API interface.

Solution

1) Check whether the motion command is correct. Modify and resave it.

2) Click ClearAlarm.

2.11 Speed Parameter Error Alarm

Table 2.12	Speed	parameter	error al	arm de	scription
1 4010 2.12	Speca	parameter	error un		benperon

Index	0x1A
Trigger condition	The relevant speed parameters are set to 0 or negative
Reset condition	Clear the alarm

Description

The relevant speed parameters are set to 0 or negative.

Reason

The relevant speed parameters are set to 0 or negative.

Solution

- 1) Check the relevant speed parameters. Modify and resave them.
- 2) Click ClearAlarm.

2.12 Planned Trajectory Error in CP Mode

Table 2.13 Planned trajectory error alarm description in CP mode

Index	0x1B
Trigger condition	The planned trajectory is abnormal in CP mode, resulting in that Dobot M1 cannot work
Reset condition	Clear the alarm

Description

The planned trajectory is abnormal in CP mode, resulting in that Dobot M1 cannot work.

Reason

• The interpolation of the trajectory is abnormal in CP mode, and the running cycle is negative.

Issue V1.0 (2019-06-30)

• The interpolation speed of the trajectory is negative.

Solution

The data is abnormal, and replace the data file.

3. Motion Alarm

3.1 Inverse Kinematics Solution Singularity Alarm

 Table 3.1
 Inverse kinematics solution singularity alarm description

Index	0x20
Trigger condition	A point on the trajectory is at the singular position where the joint angle of Forearm ranges from -20 ° to 20 °, resulting in an inverse kinematics solution error
Reset condition	Clear the alarm

Description

A point on the trajectory is at the singular position where the joint angle of Forearm ranges from -20 $^{\circ}$ to 20 $^{\circ}$, resulting in an inverse kinematics solution error.

Reason

- Dobot M1 is jogged to the singular position under the Cartesian coordinate system.
- The trajectory passes through the singular position when Dobot M1 moves in MOVL mode.
- The trajectory passes through the singular position when Dobot M1 moves in ARC mode.
- The trajectory passes through the singular position when Dobot M1 moves in CP mode.
- The trajectory passes through the singular position when Dobot M1 moves in JUMP_MOVL mode.

Solution

- If you jog Dobot M1 to the singular position, please jog Joint2 to clear the alarm.
- If a point on the trajectory is at the singular position when Dobot M1 moves with motion commands, please modify and resave the target point, then click **ClearAlarm**.

3.2 No Inverse Kinematics Solution Alarm

Table 3.2 No inverse kinematics solution alarm description

Index	0x21
Trigger condition	The trajectory is out of range of the workspace when Dobot M1 moves with motion commands, resulting in that there is no inverse kinematics solution
Reset condition	Clear the alarm

Description

The trajectory is out of range of the workspace when Dobot M1 moves with motion commands, resulting in that there is no inverse kinematics solution.

Issue V1.0 (2019-06-30)	ALARM Description	Copyright © Yuejiang Technology Co., Ltd

Reason

The trajectory is out of range of the workspace when Dobot M1 moves in all modes.

Solution

- 1) Check whether the trajectory is out of range of the workspace. Modify and resave it.
- 2) Click ClearAlarm.

3.3 Inverse Kinematics Limit Alarm

 Table 3.3
 Inverse kinematics limit alarm description

Index	0x22
Trigger condition	The inverse kinematics solution calculated according to the point on the trajectory is greater than the specified joint angle
Reset condition	Clear the alarm

Description

The inverse kinematics solution calculated according to the point on the trajectory is greater than the specified joint angle

Reason

The joint angle of a point on the trajectory is greater than the specified joint angle when Dobot M1 moves in all modes.

Solution

- 1) Check whether joint angle of a point on the trajectory is greater than the specified joint angle when Dobot M1 moves. Modify the starting point or the end point and resave it.
- 2) Click ClearAlarm.

4. Over-speed Alarm

4.1 Over-speed Alarm of Joint1

Table 4.1 Over-speed alarm description of Joint1

Index	0x30
Trigger condition	The speed of J1 motor is greater than the specific speed
Reset condition	Clear the alarm

Description

The speed of J1 motor is greater than the specific speed.

Reason

The speed of J1 motor is greater than the specific speed in MOVL and ARC modes.

Solution

- 1) Decrease the ratio of the speed to make the speed of J1 motor within the allowed speed range.
- 2) Click ClearAlarm.

4.2 Over-speed Alarm of Joint2

Table 4.2	Over-speed alar	m description of Joint2
-----------	-----------------	-------------------------

Index	0x31
Trigger condition	The speed of J2 motor is greater than the specific speed
Reset condition	Clear the alarm

Description

The speed of J2 motor is greater than the specific speed.

Reason

The speed of J2 motor is greater than the specific speed in MOVL and ARC modes.

Solution

1) Decrease the ratio of the speed to make the speed of J2 motor within the allowed speed range.

2) Click ClearAlarm.

4.3 Over-speed Alarm of Joint3

Table 4.3 Over-speed alarm description of Joint3

Issue V1.0 (2019-06-30)	ALARM Description	Copyright © Yuejiang Technology Co., Ltd
-------------------------	-------------------	--

Index	0x32
Trigger condition	The speed of J3 motor is greater than the specific speed
Reset condition	Clear the alarm

Description

The speed of J3 motor is greater than the specific speed.

Reason

The speed of J3 motor is greater than the specific speed in MOVL and ARC modes.

Solution

1) Decrease the ratio of the speed to make the speed of J3 motor within the allowed speed range.

2) Click ClearAlarm.

4.4 Over-speed Alarm of Joint4

Table 4.4 Over-speed alarm description of Joint4

Index	0x33
Trigger condition	The speed of J4 motor is greater than the specific speed
Reset condition	Clear the alarm

Description

The speed of J4 motor is greater than the specific speed

Reason

The speed of J3 motor is greater than the specific speed in MOVL and ARC modes.

Solution

- 1) Decrease the ratio of the speed to make the speed of J4 motor within the allowed speed range.
- 2) Click ClearAlarm.

5. Limit Alarm

5.1 Positive Limit Alarm of Joint1

 Table 5.1
 Positive limit alarm description of Joint1

Index	0x40
Trigger condition	The joint1 is at the positive limited position
Reset condition	Jog the joint1 towards the opposite direction and the alarm will be automatically cleared

5.2 Negative Limit Alarm of Joint1

Table 5.2	Negative limit alarm description of Joint1
-----------	--

Index	0x41
Trigger condition	The joint1 is at the negative limited position
Reset condition	Jog the joint1 towards the opposite direction and the alarm will be automatically cleared

5.3 Positive Limit Alarm of Joint2

Index	0x42
Trigger condition	The joint2 is at the positive limited position
Reset condition	Jog the joint2 towards the opposite direction and the alarm will be automatically cleared

5.4 Negative Limit Alarm of Joint2

Table 5.4	Negative limit ala	rm description	of Joint2
-----------	--------------------	----------------	-----------

Index	0x43
Trigger condition	The joint2 is at the negative limited position
Reset condition	Jog the joint2 towards the opposite direction and the alarm will be automatically cleared

5.5 Positive Limit Alarm of Joint3

Issue V1.0 (2019-06-30)

Index	0x44
Trigger condition	The joint3 is at the positive limited position
Reset condition	Jog the joint3 towards the opposite direction and the alarm will be automatically cleared

Table 5.5 Positive limit alarm description of Joint3

5.6 Negative Limit Alarm of Joint3

Table 5.6 Negative limit alarm description of Joint3

Index	0x45
Trigger condition	The joint3 is at the negative limited position
Reset condition	Jog the joint3 towards the opposite direction and the alarm will be automatically cleared

5.7 Positive Limit Alarm of Joint4

Table 5.7	Positive	limit ala	rm description	of Joint4
	1 Usitive	mmi aia	in description	01 JOIII14

Index	0x46
Trigger condition	The joint4 is at the positive limited position
Reset condition	Jog the joint4 towards the opposite direction and the alarm will be automatically cleared

5.8 Negative Limit Alarm of Joint4

Table 5.8 Negative limit alarm description of Joint4

Index	0x47
Trigger condition	The joint4 is at the negative limited position
Reset condition	Jog the joint4 towards the opposite direction and the alarm will be automatically cleared

5.9 Rear Arm and Forearm Machine-Limit Alarm

 Table 5.9
 Rear arm and Forearm machine-limit alarm description

Index	0x48	
Trigger condition	The end-effector of Dobot M1 goes through the protection area of Z-axis Screw	
Reset condition	Move Rear Arm or Forearm towards the opposite direction to clear the alarm	

Issue V1.0 (2019-06-30)

Copyright © Yuejiang Technology Co., Ltd

automatically

5.10 Lost-step Alarm

This function is reserved.

5.11 Other Alarms in Controller

This function is reserved.

Issue V1.0 (2019-06-30)

6. Rear Arm Motor Alarm

6.1 Multi-turn Number Abnormal Alarm Description of Rear Arm Encoder

Table 6.1 Multi-turn number abnormal alarm description of Rear arm Encoder

Index	0x70	
Trigger condition	The Multi-turn number of Rear arm Encoder is abnormal	
Reset condition	Clear the alarm and reboot Dobot M1	

Description

The Multi-turn number of Rear arm Encoder is abnormal.

Reason

- The cable connection between the Rear arm Encoder and Driver board is abnormal.
- The battery is disconnected or reconnected to the Encoder.
- The battery capacity of Rear arm Encoder is too low.

Solution

- 1) Check the cable connection between Rear arm Encoder board and Driver board.
- 2) Check the battery capacity. If the battery capacity is too low, it will trigger the alarm ERR_MOTOR_REAR_BATTERY_LOW as well.
- 3) Reset Rear arm Encoder using the debugging software of Dobot M1. For details, please see *Dobot M1 User Guide*.
- 4) Reboot Dobot M1.

6.2 High Temperature Alarm of Rear Arm Driver Board

 Table 6.2
 High temperature alarm description of Rear arm Driver board

Index	0x71	
Trigger condition	The temperature of Rear arm Driver board is too high	
Reset condition	Reboot Dobot M1 when the temperature is normal	

Description

The temperature of Rear arm Driver board is too high.

Reason

The temperature of Rear arm Driver board is too high.

Solution

Issue V1.0 (2019-06-30)

Improve the heat dissipation of Driver board and reboot the Dobot M1.

6.3 Low Temperature Alarm of Rear Arm Driver Board

Table 6.3 Low temperature alarm description of Rear arm Driver board

Index	0x72	
Trigger condition	The temperature of Rear arm Driver board is too low	
Reset condition	Reboot Dobot M1 when the temperature is normal	

Description

The temperature of Rear arm Driver board is too low.

Reason

The operating temperature of Dobot M1 is too low.

Solution

Place the Dobot M1 in a proper operating environment and reboot it.

6.4 Motor-locked Alarm of Rear Arm Driver Board

 Table 6.4
 Motor-locked alarm description of Rear arm Driver board

Index	0x73	
Trigger condition	The Rear arm motor is stalled and the Driver board detects an abnormal current	
Reset condition	Clear the alarm and reboot Dobot M1	

Description

The Rear arm motor is stalled and the Driver board detects an abnormal current.

Reason

The Rear arm motor is stalled and the Driver board detects an abnormal current.

Solution

- 1) Check whether the Rear arm is in a machine-limited position or blocked by obstacles.
- 2) Reboot Dobot M1.

6.5 High DC Bus Voltage of Rear Arm Driver Board

Table 6.5High DC bus voltage alarm description of Rear arm Driver board

Index	0x74	
Trigger condition	The DC bus voltage of Rear arm Driver is too high	

Issue V1.0 (2019-06-30)

ALARM Description Copyright © Yuejiang Technology Co., Ltd

Reset condition Clear the alarm and reboot Dobot M1

Description

The DC bus voltage of Rear arm Driver is too high.

Reason

The DC bus voltage of Rear arm Driver is too high.

Solution

- 1) Check the power supply of Dobot M1
- 2) Reboot Dobot M1.

6.6 Low DC Bus Voltage of Rear Arm Driver Board

Table 6.6 Low DC bus voltage alarm description of Rear arm Driver board

Index	0x75	
Trigger condition	The DC bus voltage of Rear arm Driver is too low	
Reset condition	Clear the alarm and reboot Dobot M1	

Description

The DC bus voltage of Rear arm Driver is too low

Reason

The DC bus voltage of Rear arm Driver is too low

Solution

- 1) Check the power supply of Dobot M1
- 2) Reboot Dobot M1.

6.7 IIT Alarm of Rear Arm Driver Board

Table 6.7	IIT alarm of Rear arm Driver board
-----------	------------------------------------

Index	0x76
Trigger condition	IIT alarm of the Rear arm Driver board
Reset condition	Clear the alarm and reboot Dobot M1

Description

IIT alarm of the Rear arm Driver board.

Reason

Issue V1.0 (2019-06-30)ALARM DescriptionCopyright © Yuejiang Technology Co., Ltd

Rear arm motor works too long time (longer than the specific time) in overload state.

Solution

- 1) Check the load and working condition of Dobot M1.
- 2) Reboot Dobot M1.

6.8 Over-speed Alarm of Rear Arm Driver Board

 Table 6.8
 Over-speed alarm description of Rear arm Driver board

Index	0x77	
Trigger condition	Over-speed alarm of the Rear arm driver board	
Reset condition	Clear the alarm and reboot Dobot M1	

Description

Rear arm motor working speed is over the rated speed or much higher than the expected speed.

Reason

- The power cable of Rear arm motor is abnormal.
- Rear arm Encoder is abnormal.
- The angle self-learning of Rear arm motor is abnormal.

Solution

- 1) Check the power cable connection between Rear arm motor and Rear arm Driver board.
- 2) Check the cable connection between Rear arm Encoder and Rear arm Driver board.
- 3) Re-execute self-learning using Dobot M1 debugging software.

6.9 Low Battery Capacity of Rear Arm Encoder

 Table 6.9
 Low battery capacity alarm description of Rear arm Encoder

Index	0x78	
Trigger condition	The battery capacity of Rear arm Encoder is too low	
Reset condition	Clear the alarm and reboot Dobot M1	

Description

The battery capacity of Rear arm Encoder is too low.

Reason

- The connection between Rear arm Encoder and the battery is abnormal.
- The battery capacity of Rear arm Encoder is low.

Issue V1.0 (2019-06-30)	ALARM Description

Solution

- 1) Check the connection between Rear arm Encoder and the battery.
- Replace the battery and reset the Encoder based on the battery change guide on the M1Studio.

6.10 Phase-lack Alarm of Rear Arm Motor

 Table 6.10
 Phase-lack alarm description of Rear arm motor

Index	0x79
Trigger condition	Rear arm motor lacks phase
Reset condition	Clear the alarm and reboot Dobot M1

Description

Rear arm motor lacks phase

Reason

The power cable of Rear arm motor is disconnected or poor connected.

Solution

- 1) Check the power cable connection of Rear arm motor.
- 2) Reboot Dobot M1.

6.11 Wrong Phase Alarm of Rear Arm Motor

Table 6.11 Wrong phase alarm description of Rear arm motor

Index	0x7A
Trigger condition	The power cable of Rear arm motor has wrong phase
Reset condition	Clear the alarm and reboot Dobot M1

Description

The power cable of Rear arm motor has wrong phase.

Reason

The power cable connection between Rear arm motor and Rear arm Driver board is wrong.

Solution

- 1) Check the power cable connection of Rear arm motor.
- 2) Reboot Dobot M1.

6.12 Lost-speed Alarm of Rear Arm Driver Board

Issue V1.0 (2019-06-30) ALA

Copyright © Yuejiang Technology Co., Ltd

Index	0x7B
Trigger condition	The working speed of Rear arm motor is zero or much lower than the expected speed
Reset condition	Clear the alarm and reboot Dobot M1

Table 6.12 Lost-speed alarm description of Rear arm Driver board

Description

The working speed of Rear arm motor is zero or much lower than the expected speed.

Reason

- The power cable of Rear arm motor is abnormal.
- Rear arm Encoder is abnormal.
- The angle self-learning of Rear arm motor is abnormal.

Solution

- 1) Check the power cable connection between Rear arm motor and Rear arm Driver board.
- 2) Check the cable connection between Rear arm Encoder and Rear arm Driver board.
- 3) Re-execute angle self-learning using Dobot M1 debugging software.
- 4) Reboot Dobot M1.

6.13 Angle Self-learning Alarm of Rear Arm Driver Board

Table 6.13Self-learning alarm description of Rear arm Driver board

Index	0x7C
Trigger condition	The angle self-learning of Rear arm Driver board is abnormal
Reset condition	Clear the alarm and reboot Dobot M1

Description

The angle self-learning of Rear arm Driver board is abnormal.

Reason

- The angle self-learning of Rear arm Driver board has not been started.
- The self-learning data in EEPROM is lost.

Solution

Re-execute self-learning using Dobot M1 debugging software.

6.14 Calibration Alarm of Rear Arm Encoder

Issue V1.0 (2019-06-30) ALARM Description Copyright © Yuejiang Technology Co., I
--

Fable 6.14	Calibration	alarm	description	of Rear	arm	Encoder
------------	-------------	-------	-------------	---------	-----	---------

Index	0x7D
Trigger condition	Rear arm Encoder is not calibrated.
Reset condition	Clear the alarm and reboot Dobot M1

Description

Rear arm Encoder is not calibrated.

Reason

- Rear arm Encoder is not calibrated.
- The calibration data of Rear arm Encoder is lost.

Solution

Please recalibrate Rear arm Encoder. For details, please see Dobot M1 User Guide.

6.15 CAN Communication Interruption Alarm of Rear Arm

Table 6.15 CAN communication interruption alarm description of Rear arm

Index	0x7E
Trigger condition	The CAN communication with Rear arm is interrupted
Reset condition	Clear the alarm and reboot Dobot M1

Description

The CAN communication with Rear arm is interrupted.

Reason

- Rear arm Driver board is not working.
- The CAN cable connection between Rear arm and the controller is abnormal.
- The hardware circuit related to the CAN chip is abnormal.

Solution

Restart Dobot M1 after checking the CAN cable and the CAN chip.

7. Forearm Motor Alarm

7.1 Multi-turn Number Abnormal Alarm Description of Forearm Encoder

 Table 7.1
 Multi-turn number abnormal alarm description of Forearm Encoder

Index	0x80
Trigger condition	The Multi-turn number of Forearm Encoder is abnormal
Reset condition	Clear the alarm and reboot Dobot M1

Description

The Multi-turn number of Forearm Encoder is abnormal.

Reason

- The cable connection between the Forearm Encoder and Driver board is abnormal.
- The battery is disconnected or reconnected to the Encoder.
- The battery capacity of Forearm Encoder is too low.

Solution

- 1) Check the cable connection between Forearm Encoder and Driver board.
- 2) Check the battery capacity. If the battery capacity is too low, it will trigger the alarm ERR_MOTOR_FRONT_BATTERY_LOW as well.
- 3) Reset Forearm Encoder using the debugging software of Dobot M1. For details, please see *Dobot M1 User Guide*.
- 4) Reboot Dobot M1.

7.2 High Temperature Alarm of Forearm Driver Board

 Table 7.2
 High temperature alarm description of Forearm Driver board

Index	0x81
Trigger condition	The temperature of Forearm Driver board is too high
Reset condition	Reboot Dobot M1 when the temperature is normal

Description

The temperature of Forearm Driver board is too high.

Reason

The temperature of Forearm Driver board is too high.

Solution

Issue V1.0 (2019-06-30)

Improve the heat dissipation of Driver board and reboot Dobot M1.

7.3 Low Temperature Alarm of Forearm Driver Board

Table 7.3 Low temperature alarm description of Forearm Driver

Index	0x82
Trigger condition	The temperature of Forearm Driver board is too low
Reset condition	Reboot Dobot M1 when the temperature is normal

Description

The temperature of Forearm Driver board is too low.

Reason

The operating temperature of Dobot M1 is too low.

Solution

Place the Dobot M1 in a proper operating environment and reboot it.

7.4 Motor-locked Alarm of Forearm Driver Board

 Table 7.4
 Motor-locked alarm description of Forearm Driver board

Index	0x83
Trigger condition	The Forearm motor is stalled and the Driver board detects an abnormal current
Reset condition	Clear the alarm and reboot Dobot M1

Description

The Forearm motor is stalled and the Driver board detects an abnormal current.

Reason

The Forearm motor is stalled and the Driver board detects an abnormal current.

Solution

- 1) Check whether the Forearm is in a machine-limited position or blocked by obstacles.
- 2) Reboot Dobot M1.

7.5 High DC Bus Voltage of Forearm Driver Board

Table 7.5High DC bus voltage alarm description of Forearm Driver board

Index	0x84
Trigger condition	The DC bus voltage of Forearm Driver is too high

Issue V1.0 (2019-06-30)

ALARM Description Copyright © Yuejiang Technology Co., Ltd

Reset condition Clear the alarm and reboot Dobot M1

Description

The DC bus voltage of Forearm Driver is too high.

Reason

The DC bus voltage of Forearm Driver is too high.

Solution

- 1) Check the power supply of Dobot M1.
- 2) Reboot Dobot M1.

7.6 Low DC Bus Voltage of Forearm Driver Board

Table 7.6 Low DC bus voltage alarm description of Forearm Driver board

Index	0x85	
Trigger condition	The DC bus voltage of Forearm Driver is too low	
Reset condition	Clear the alarm and reboot Dobot M1	

Description

The DC bus voltage of Forearm Driver is too low.

Reason

The DC bus voltage of Forearm Driver is too low.

Solution

- 1) Check the power supply of Dobot M1.
- 2) Reboot Dobot M1.

7.7 IIT Alarm of Forearm Driver Board

	Index	0x86	
	Trigger condition	IIT alarm of the Forearm Driver board	
Reset condition Clear the alarm and reboot Dobot M1		Clear the alarm and reboot Dobot M1	

Description

IIT alarm of the Forearm Driver board.

Reason

Issue V1.0 (2019-06-30)ALARM DescriptionCopyright © Yuejiang Technology Co., Ltd

Forearm motor works too long time (longer than the specific time) in overload state.

Solution

- 1) Check the load and working condition of Dobot M1.
- 2) Reboot Dobot M1.

7.8 Over-speed Alarm of Forearm Driver Board

Table 7.8Over-speed alarm description of Forearm Driver board

Index	0x87	
Trigger condition	Over-speed alarm of Forearm Driver board	
Reset condition	Clear the alarm and reboot Dobot M1	

Description

Forearm motor working speed is over the rated speed or much higher than the expected speed.

Reason

- The power cable of Forearm motor is abnormal.
- Forearm Encoder is abnormal.
- The angle self-learning of Forearm motor is abnormal.

Solution

- 1) Check the power cable connection between Forearm motor and Forearm Driver board.
- 2) Check the cable connection between Forearm Encoder and Forearm Driver board.
- 3) Re-execute self-learning using Dobot M1 debugging software.

7.9 Low Battery Capacity of Forearm Encoder

 Table 7.9
 Low battery capacity alarm description of Forearm Encoder

Index	0x88	
Trigger condition	The battery capacity of Forearm Encoder is too low	
Reset condition	Clear the alarm and reboot Dobot M1	

Description

The battery capacity of Forearm Encoder is too low.

Reason

- The connection between Forearm Encoder and the battery is abnormal.
- The battery capacity of Forearm Encoder is low.

```
Issue V1.0 (2019-06-30)
```

ALARM Description Copyrig

Solution

- 1) Check the connection between Forearm Encoder and the battery.
- Replace the battery and reset the Encoder based on the battery change guide on the M1Studio.

7.10 Phase-lack Alarm of Forearm Motor

Table 7.10 Phase-lack alarm description of Forearm motor

Index	0x89	
Trigger condition	Forearm motor lacks phase	
Reset condition	Clear the alarm and reboot Dobot M1	

Description

Forearm motor lacks phase

Reason

The power cable of Forearm motor is disconnected or poor connected.

Solution

- 1) Check the power cable connection of Forearm motor.
- 2) Reboot Dobot M1.

7.11 Wrong Phase Alarm of Forearm Motor

Table 7.11 Wrong phase alarm description of Forearm motor

Index	0x8A	
Trigger condition	The power cable of Forearm motor has wrong phase	
Reset condition	Clear the alarm and reboot Dobot M1	

Description

The power cable of Forearm motor has wrong phase.

Reason

The power cable connection between Forearm motor and Forearm Driver board is wrong.

Solution

- 1) Check the power cable connection of Forearm motor.
- 2) Reboot Dobot M1.

7.12 Lost-speed Alarm of Forearm Driver Board

Issue V1.0 (2019-06-30)

(30) ALARM

Copyright © Yuejiang Technology Co., Ltd

Table 7.12	Lost-speed alarm	description	of Forearm	Driver board
------------	------------------	-------------	------------	--------------

Index	0x8B	
Trigger condition	The working speed of Forearm motor is zero or much lower than the expected sp	
Reset condition	Clear the alarm and reboot Dobot M1	

Description

The working speed of Forearm motor is zero or much lower than the expected speed.

Reason

- The power cable of Forearm motor is abnormal.
- Forearm Encoder is abnormal.
- The angle self-learning of Forearm motor is abnormal.

Solution

- 1) Check the power cable connection between Forearm motor and Forearm Driver board.
- 2) Check the cable connection between Forearm Encoder and Forearm Driver board.
- 3) Re-execute angle self-learning using Dobot M1 debugging software.
- 4) Reboot Dobot M1.

7.13 Angle Self-learning Alarm of Forearm Driver Board

 Table 7.13
 Angle self-learning alarm description of Forearm Driver board

Index	0x8C	
Trigger condition	The angle self-learning of Forearm Driver board is abnormal	
Reset condition	Clear the alarm and reboot Dobot M1	

Description

The angle self-learning of Forearm Driver board is abnormal.

Reason

- The angle self-learning of Forearm Driver board has not been started.
- The self-learning data in EEPROM is lost.

Solution

Re-execute self-learning using Dobot M1 debugging software.

7.14 Calibration Alarm of Forearm Encoder

Issue V1.0 (2019-06-30)

ALARM Description

Copyright © Yuejiang Technology Co., Ltd

	Table 7.14	Calibration	alarm	description	of Forearm	Encoder
--	------------	-------------	-------	-------------	------------	---------

Index	0x8D
Trigger condition	小臂编码器未校准报警 Forearm Encoder is not calibrated.
Reset condition	清除错误并重新启动 Dobot M1 Clear the alarm and reboot Dobot M1

Description

Forearm Encoder is not calibrated.

Reason

- Forearm Encoder is not calibrated.
- The calibration data of Forearm Encoder is lost.

Solution

Please recalibrate Forearm Encoder. For details, please see Dobot M1 User Guide.

7.15 CAN Communication Interruption Alarm of Forearm

Table 7.15	CAN con	munication	interruption	alarm o	description	of Forearm
14010 7.15	Cr ii v com	manneution	memupuon	ununn	desemption	or r orearm

Index	0x8E
Trigger condition	The CAN communication with Forearm is interrupted
Reset condition	Clear the alarm and reboot Dobot M1

Description

The CAN communication with Forearm is interrupted.

Reason

- Forearm Driver board is not working.
- The CAN cable connection between Forearm and the controller is abnormal.
- The hardware circuit related to the CAN chip is abnormal.

Solution

Restart Dobot M1 after checking the CAN cable and the CAN chip.

8. Z-axis Motor Alarm

8.1 Multi-turn Number Abnormal Alarm Description of Z-axis Encoder

Table 8.1 Multi-turn number abnormal alarm description of Z-axis Encoder

Index	0x90
Trigger condition	The Multi-turn number of Z-axis Encoder is abnormal
Reset condition	Clear the alarm and reboot the M1

Description

The Multi-turn number of Z-axis Encoder is abnormal.

Reason

- The cable connection between the Z-axis Encoder and Driver board is abnormal.
- The battery is disconnected or reconnected to the Encoder.
- The battery capacity of Z-axis Encoder is too low.

Solution

- 1) Check the cable connection between Z-axis Encoder and Driver board.
- 2) Check the battery capacity. If the battery capacity is too low, it will trigger the alarm ERR_MOTOR_Z_BATTERY_LOW as well.
- 3) Reset Z-axis Encoder using the debugging software of Dobot M1. For details, please see *Dobot M1 User Guide*.
- 4) Reboot Dobot M1.

8.2 High Temperature Alarm of Z-axis Driver Board

 Table 8.2
 High temperature alarm description of Z-axis Driver board

Index	0x91
Trigger condition	The temperature of Z-axis Driver board is too high
Reset condition	Reboot Dobot M1 when the temperature is normal

Description

The temperature of Z-axis Driver board is too high.

Reason

- The temperature of Z-axis Driver board is too high.
- The energy regeneration is abnormal.

```
Issue V1.0 (2019-06-30)
```

ALARM Description Copy

Solution

- 1) Improve heat dissipation of Z-axis Driver.
- 2) Check the energy regeneration.
- 3) Reboot Dobot M1.

8.3 Low Temperature Alarm of Z-axis Driver Board

 Table 8.3
 Low temperature alarm description of Z-axis Driver board

Index	0x92
Trigger condition	The temperature of Z-axis Driver board is too low
Reset condition	Reboot Dobot M1 when the temperature is normal

Description

The temperature of Z-axis Driver board is too low.

Reason

The operating temperature of Dobot M1 is too low.

Solution

Place the Dobot M1 in a proper operating environment and reboot it.

8.4 Motor-locked Alarm of Z-axis Driver Board

Table 8.4 Motor-locked alarm description of Z-axis Driver board

Index	0x93
Trigger condition	The Z-axis motor is stalled and the Driver board detects an abnormal current
Reset condition	Clear the alarm and reboot the Dobot M1

Description

The Z-axis motor is stalled and the Driver board detects an abnormal current.

Reason

- Z-axis Motor is stalled, resulting in that the current is too large, and Z-axis Driver detects an abnormal current.
- The angle self-learning of Z-axis Motor is abnormal.

Solution

- 1) Check whether Z-axis is in a machine-limited position or blocked by obstacles, and restart Dobot M1
- 2) If the problem persists, please re-execute angle self-learning of Z-axis Motor using

Issue V1.0 (2019-06-30)

ALARM Description Copyright © Yuejiang Technology Co., Ltd

the debugging software of Dobot M1. For details, please contact technical support engineer.

8.5 High DC Bus Voltage of Z-axis Driver Board

Table 8.5 High DC bus voltage alarm description of Z-axis Driver board

Index	0x94
Trigger condition	The DC bus voltage of Z-axis Driver is too high
Reset condition	Clear the alarm and reboot Dobot M1

Description

The DC bus voltage of Z-axis Driver is too high.

Reason

- The DC bus voltage of Z-axis Driver is too high.
- The energy regeneration is abnormal.

Solution

- 1) Check the power supply of Dobot M1.
- 2) Check the energy regeneration.
- 3) Restart Dobot M1.

8.6 Low DC Bus Voltage of Z-axis Driver Board

 Table 8.6
 Low DC bus voltage alarm description of Z-axis Driver board

Index	0x95
Trigger condition	The DC bus voltage of Z-axis Driver is too low
Reset condition	Clear the alarm and reboot Dobot M1

Description

The DC bus voltage of Z-axis Driver is too low.

Reason

The DC bus voltage of Z-axis Driver is too low.

Solution

- 1) Check the power supply of Dobot M1.
- 2) Reboot Dobot M1.

8.7 IIT Alarm of Z-axis Driver Board

Issue V1.0 (2019-06-30)

Table 8.7 IIT alarm of Z-axis Driver board

Index	0x96
Trigger condition	IIT alarm of Z-axis Driver board
Reset condition	Clear the alarm and reboot Dobot M1

Des

IIT alarm of Z-axis Driver board.

Reason

Z-axis motor works too long time (longer than the specific time) in overload state.

Solution

- 1) Check the load and working condition of Dobot M1.
- 2) Reboot Dobot M1.

8.8 Over-speed Alarm of Z-axis Driver Board

Table 8.8	Over-speed alarm	description	of Z-axis	Driver board
-----------	------------------	-------------	-----------	--------------

Index	0x97
Trigger condition	Over-speed alarm of Z-axis driver board
Reset condition	Clear the alarm and reboot Dobot M1

Description

Z-axis motor working speed is over the rated speed or much higher than the expected speed.

Reason

- The power cable of Z-axis motor is abnormal.
- Z-axis Encoder is abnormal.
- The angle self-learning of Z-axis motor is abnormal.

Solution

- 1) Check the power cable connection between Z-axis motor and Z-axis Driver board.
- 2) Check the cable connection between Z-axis Encoder and Z-axis Driver board.
- 3) Re-execute self-learning using Dobot M1 debugging software.

8.9 Low Battery Capacity of Z-axis Encoder

Table 8.9 Low battery capacity alarm description of Z-axis Encoder

Index 0x98

Issue V1.0 (2019-06-30) ALARM Description Copyright © Yuejiang Technology Co., Ltd

Trigger condition	The battery capacity of Z-axis Encoder is too low
Reset condition	Clear the alarm and reboot Dobot M1

Description

The battery capacity of Z-axis Encoder is too low.

Reason

- The connection between Z-axis Encoder and the battery is abnormal.
- The battery capacity of Z-axis Encoder is low.

Solution

- 1) Check the connection between Z-axis Encoder and the battery.
- Replace the battery and reset the Encoder based on the battery change guide on the M1Studio.

8.10 Phase-lack Alarm of Z-axis Motor

Table 8.10 Phase-lack alarm description of Z-axis motor

Index	0x99
Trigger condition	Z-axis motor lacks phase
Reset condition	Clear the alarm and reboot Dobot M1

Description

Z-axis motor lacks phase.

Reason

The power cable of Z-axis motor is disconnected or poor connected.

Solution

- 1) Check the power cable connection of Z-axis motor.
- 2) Reboot Dobot M1.

8.11 Wrong Phase Alarm of Z-axis Motor

Table 8.11	Wrong phase alarn	n description	of Z-axis motor
------------	-------------------	---------------	-----------------

Index	0x9A
Trigger condition	The power cable of Z-axis motor has wrong phase
Reset condition	Clear the alarm and reboot Dobot M1

Issue V1.0 (2019-06-30)

Description

The power cable of Z-axis motor has wrong phase.

Reason

The power cable connection between Z-axis motor and Z-axis Driver board is wrong.

Solution

1) Check the power cable connection of Z-axis motor.

2) Reboot Dobot M1.

8.12 Lost-speed Alarm of Z-axis Driver Board

Table 8.12 Lost-speed alarm description of Z-axis Driver board

Index	0x9B
Trigger condition	The working speed of Z-axis motor is zero or much lower than the expected speed
Reset condition	Clear the alarm and reboot Dobot M1

Description

The working speed of Z-axis motor is zero or much lower than the expected speed.

Reason

- The power cable of Z-axis motor is abnormal.
- Z-axis Encoder is abnormal.
- The angle self-learning of Z-axis motor is abnormal.

Solution

- 1) The power cable of Z-axis motor is abnormal.
- 2) Check the cable connection between Z-axis Encoder and Z-axis Driver board.
- 3) Re-execute angle self-learning using Dobot M1 debugging software.

8.13 Angle Self-learning Alarm of Z-axis Driver Board

Table 8.13 Self-learning alarm description of Z-axis driver board

Index	0x9C
Trigger condition	The angle self-learning of Z-axis Driver board is abnormal
Reset condition	Clear the alarm and reboot Dobot M1

Description

The angle self-learning of Z-axis Driver board is abnormal.

Issue V1.0 (2019-06-30)	ALARM Description	Copyright © Yuejiang Technology Co., Ltd

Reason

- The angle self-learning of Z-axis Driver board has not been started.
- The self-learning data in EEPROM is lost.

Solution

Re-execute self-learning using Dobot M1 debugging software.

8.14 Calibration Alarm of Z-axis Encoder

Table 8.14 Calibration alarm description of Z-axis Encoder

Index	0x9D
Trigger condition	Z-axis Encoder is not calibrated
Reset condition	Clear the alarm and reboot Dobot M1

Description

Z-axis Encoder is not calibrated.

Reason

- Z-axis Encoder is not calibrated.
- The calibration data of Z-axis Encoder is lost.

Solution

Please recalibrate Z-axis Encoder. For details, please see Dobot M1 User Guide.

8.15 CAN Communication Interruption Alarm of Z-axis

Table 8.15 CAN communication int	terruption alarm d	escription of Z-axis
----------------------------------	--------------------	----------------------

Index	0x9E
Trigger condition	The CAN communication with Z-axis is interrupted
Reset condition	Clear the alarm and reboot Dobot M1

Description

The CAN communication with Z-axis is interrupted.

Reason

- Z-axis Driver board is not working.
- The CAN cable connection between Z-axis and the controller is abnormal.
- The hardware circuit related to the CAN chip is abnormal.

Solution

Issue V1.0 (2019-06-30)

Restart Dobot M1 after checking the CAN cable and the CAN chip.

9. R-axis Motor Alarm

9.1 Multi-turn Number Abnormal Alarm Description of R-axis Encoder

Table 9.1 Multi-turn number abnormal alarm description of R-axis Encoder

Index	0xA0
Trigger condition	The Multi-turn number of R-axis Encoder is abnormal
Reset condition	Clear the alarm and reboot the Dobot M1

Description

The Multi-turn number of R-axis Encoder is abnormal.

Reason

- The cable connection between the R-axis Encoder and Driver board is abnormal.
- The battery is disconnected or reconnected to the Encoder.
- The battery capacity of R-axis Encoder is too low.

Solution

- 1) Check the cable connection between R-axis Encoder board and Driver board.
- 2) Check the battery capacity. If the battery capacity is too low, it will trigger the alarm ERR_MOTOR_R_BATTERY_LOW as well.
- 3) Reset R-axis Encoder using the debugging software of Dobot M1. For details, please see *Dobot M1 User Guide*.
- 4) Reboot Dobot M1.

9.2 High Temperature Alarm of R-axis Driver Board

 Table 9.2
 High temperature alarm description of R-axis Driver board

Index	0xA1	
Trigger condition	The temperature of R-axis Driver board is too high	
Reset condition Reboot the Dobot M1 when the temperature is normal		

Description

The temperature of R-axis Driver board is too high.

Reason

The temperature of R-axis Driver board is too high.

Solution

Issue V1.0 (2019-06-30)

Improve the heat dissipation of Driver board and reboot Dobot M1.

9.3 Low Temperature Alarm of R-axis Driver Board

 Table 9.3
 Low temperature alarm description of R-axis Driver board

Index	0xA2	
Trigger condition	The temperature of R-axis Driver board is too low	
Reset condition	Reboot the Dobot M1 when the temperature is normal	

Description

The temperature of R-axis Driver board is too low.

Reason

The operating temperature of Dobot M1 is too low.

Solution

Place the Dobot M1 in a proper operating environment and reboot it.

9.4 Motor-locked Alarm of R-axis Driver Board

Table 9.4 Motor-locked alarm description of R-axis driver board

Index	0xA3	
Trigger condition	The R-axis motor is stalled and the Driver board detects an abnormal current	
Reset condition	Clear the alarm and reboot the Dobot M1	

Description

The R-axis motor is stalled and the Driver board detects an abnormal current.

Reason

The R-axis motor is stalled and the Driver board detects an abnormal current.

Solution

- 1) Check whether the R-axis is in a machine-limited position or blocked by obstacles.
- 2) Reboot Dobot M1.

9.5 High DC Bus Voltage of R-axis Driver Board

Table 9.5High DC bus voltage alarm description of R-axis Driver board

Index	0xA4
Trigger condition	The DC bus voltage of R-axis Driver is too high

Issue V1.0 (2019-06-30)

ALARM Description Copyright © Yuejiang Technology Co., Ltd

Reset condition Clear the alarm and reboot Dobot M1

Description

The DC bus voltage of R-axis Driver is too high.

Reason

The DC bus voltage of R-axis Driver is too high.

Solution

- 1) Check the power supply of Dobot M1.
- 2) Reboot Dobot M1.

9.6 Low DC Bus Voltage of R-axis Driver Board

Table 9.6 Low DC bus voltage alarm description of R-axis Driver board

Index	0xA5	
Trigger condition	The DC bus voltage of R-axis Driver is too low	
Reset condition	Clear the alarm and reboot Dobot M1	

Description

The DC bus voltage of R-axis Driver is too low.

Reason

The DC bus voltage of R-axis Driver is too low.

Solution

- 1) Check the power supply of Dobot M1.
- 2) Reboot Dobot M1.

9.7 IIT Alarm of R-axis Driver Board

Index	0xA6
Trigger condition	IIT alarm of R-axis Driver board
Reset condition	Clear the alarm and reboot Dobot M1

Description

IIT alarm of R-axis Driver board.

Reason

Issue V1.0 (2019-06-30)ALARM DescriptionCopyright © Yuejiang Technology Co., Ltd

R-axis motor works too long time (longer than the specific time) in overload state.

Solution

- 1) Check the load and working condition of Dobot M1.
- 2) Reboot Dobot M1.

9.8 Over-speed Alarm of R-axis Driver Board

Table 9.8 Over-speed alarm description of R-axis Driver board

Index	0xA7
Trigger condition	Over-speed alarm of R-axis Driver board
Reset condition	Clear the alarm and reboot Dobot M1

Description

R-axis motor working speed is over the rated speeds or much higher than the expected speed.

Reason

- The power cable of R-axis motor is abnormal.
- R-axis Encoder is abnormal.
- The angle self-learning of R-axis motor is abnormal.

Solution

- 1) Check the power cable connection between R-axis motor and R-axis Driver board.
- 2) Check the cable connection between R-axis Encoder and R-axis Driver board.
- 3) Re-execute self-learning using Dobot M1 debugging software.

9.9 Low Battery Capacity of R-axis Encoder

 Table 9.9
 Low battery capacity alarm description of R-axis Encoder

Index	0xA8	
Trigger condition	The battery capacity of R-axis Encoder is too low	
Reset condition	Clear the alarm and reboot Dobot M1	

Description

The battery capacity of R-axis Encoder is too low.

Reason

- The connection between R-axis Encoder and the battery is abnormal.
- The battery capacity of R-axis Encoder is low.

Issue V1.0 (2019-06-30)

ALARM Description Copyright

Solution

- 1) Check the connection between R-axis Encoder and the battery.
- Replace the battery and reset the Encoder based on the battery change guide on the M1Studio.

9.10 Phase-lack Alarm of R-axis Motor

Table 9.10 Phase-lack alarm description of R-axis motor

Index	0xA9	
Trigger condition	R-axis motor lacks phase	
Reset condition	Clear the alarm and reboot Dobot M1	

Description

R-axis motor lacks phase

Reason

The power cable of R-axis motor is disconnected or poor connected.

Solution

- 1) Check the power cable connection of R-axis motor.
- 2) Reboot Dobot M1.

9.11 Wrong Phase Alarm of R-axis Motor

Table 9.11 Wrong phase alarm description of R-axis motor

Index	0xAA	
Trigger condition	The power cable of R-axis motor has wrong phase	
Reset condition	Clear the alarm and reboot Dobot M1	

Description

The power cable of R-axis motor has wrong phase.

Reason

The power cable connection between R-axis motor and R-axis Driver board is wrong.

Solution

- 1) Check the power cable connection of R-axis motor.
- 2) Reboot Dobot M1.

9.12 Lost-speed Alarm of R-axis Driver Board

Issue V1.0 (2019-06-30) ALARM Description

ion Copyright © Yuejiang Technology Co., Ltd

Table 9.12	Lost-speed a	alarm description	of R-axis	Driver board
------------	--------------	-------------------	-----------	--------------

Index	0xAB	
Trigger condition	The working speed of R-axis motor is zero or much lower than the expected speed	
Reset condition	Clear the alarm and reboot Dobot M1	

Description

The working speed of R-axis motor is zero or much lower than the expected speed.

Reason

- The power cable of R-axis motor is abnormal.
- R-axis Encoder is abnormal.
- The angle self-learning of R-axis motor is abnormal.

Solution

- 1) Check the power cable connection between R-axis motor and R-axis Driver board.
- 2) Check the cable connection between R-axis Encoder and R-axis Driver board.
- 3) Re-execute angle self-learning using Dobot M1 debugging software.
- 4) Reboot Dobot M1.

9.13 Angle Self-learning Alarm of R-axis Driver Board

 Table 9.13
 Self-learning alarm description of R-axis Driver board

Index	0xAC	
Trigger condition	The angle self-learning of R-axis Driver board is abnormal	
Reset condition	Clear the alarm and reboot Dobot M1	

Description

The angle self-learning of R-axis Driver board is abnormal.

Reason

- The angle self-learning of R-axis Driver board has not been started.
- The self-learning data in EEPROM is lost.

Solution

Re-execute self-learning using Dobot M1 debugging software.

9.14 Calibration Alarm of R-axis Encoder

Issue V1.0 (2019-06-30) ALARM Description Copyright © Yuejiang Technology Co., Ltd

Table 9.14 Calibration alarm description of R-axis Encoder

Index	0xAD	
Trigger condition	R-axis Encoder is not calibrated	
Reset condition	Clear the alarm and reboot Dobot M1	

Description

R-axis Encoder is not calibrated.

Reason

- R-axis Encoder is not calibrated.
- The calibration data of R-axis Encoder is lost.

Solution

Please recalibrate R-axis Encoder. For details, please see Dobot M1 User Guide.

9.15 CAN Communication Interruption Alarm of R-axis

 Table 9.15
 CAN communication interruption alarm description of R-axis

Index	0xAE	
Trigger condition	The CAN communication with R-axis is interrupted	
Reset condition	清除错误并重新启动 Dobot M1 Clear the alarm and reboot Dobot M1	

Description

The CAN communication with R-axis is interrupted.

Reason

- R-axis Driver board is not working.
- The CAN cable connection between R-axis and the controller is abnormal.
- The hardware circuit related to the CAN chip is abnormal.

Solution

Restart Dobot M1 after checking the CAN cable and the CAN chip.

10. I/O Alarm of End-effector

10.1 I/O Abnormality Alarm of End-effector

Table 10.1	I/O abnormality alarm	of End-effector
------------	-----------------------	-----------------

Index	0xB0	
Trigger condition	The I/O interface of end-effector is abnormal	
Reset condition	Clear the alarm and reboot Dobot M1	

Description

The I/O interface of end-effector is abnormal.

Reason

- The cable connection is abnormal when testing I/O interface.
- The I/O interface is unavailable.

Solution

Restart Dobot M1 after checking the cable connection.

10.2 RS485 Communication Alarm of End-effector I/O Interface

Table 10.2 RS485 communication alarm description of end-effector I/O interface

Index	0xB1	
Trigger condition	RS485 communication of the end-effector I/O interface is abnormal.	
Reset condition Clear the alarm and reboot Dobot M1		

Description

RS485 communication of the end-effector I/O interface is abnormal.

Reason

The cable connection of RS485 communication is abnormal.

Solution

Restart Dobot M1 after checking the cable connection.

10.3 CAN Communication Interruption Alarm of End-effector I/O Interface

Table 10.3 CAN communication interruption alarm description of End-effector I/O interface

Index	0xB2		
Issue V1.0 (2019-	06-30)	ALARM Description	Copyright © Yuejiang Technology Co., Ltd

Trigger condition	CAN communication of the end-effector I/O interface is interrupted	
Reset condition	Clear the alarm and reboot Dobot M1	

Description

CAN communication of the end-effector I/O interface is interrupted.

Reason

- The end-effector I/O interface is not working.
- The CAN cable connection between the end-effector I/O interface and Driver is abnormal.
- The hardware circuit related to the CAN chip is abnormal.

Solution

Restart Dobot M1 after checking the CAN cable and the CAN chip. For details, please contact technical support engineer.

Issue V1.0 (2019-06-30)

11. Other Alarms

11.1 Emergency Stop Alarm

Table 11.1 Emergency stop alarm description

	Index	0x6C	
	Trigger condition	Dobot M1 is in the emergency-stopped status	
Reset condition Clear the alarm based on the solution		Clear the alarm based on the solution	

Description

Dobot M1 is in the emergency-stopped status

Reason

Hold down the emergency stop button, resulting in that Dobot M1 is in the stopped status.

Solution

Rotate the emergency stop button clockwise to clear the stopped status. It will be released when rotating to 45 $^\circ\!\!.$

Issue V1.0 (2019-06-30)